scholarly journals RASSF1A inhibits PDGFB-driven malignant phenotypes of nasopharyngeal carcinoma cells in a YAP1-dependent manner

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Ying-Ying Liang ◽  
Xu-Bin Deng ◽  
Xian-Tao Lin ◽  
Li-Li Jiang ◽  
Xiao-Ting Huang ◽  
...  

Abstract Nasopharyngeal carcinoma (NPC) is a highly aggressive tumor characterized by distant metastasis. Deletion or down-regulation of the tumor suppressor protein ras-association domain family protein1 isoform A (RASSF1A) has been confirmed to be a key event in NPC progression; however, little is known about the effects or underlying mechanism of RASSF1A on the malignant phenotype. In the present study, we observed that RASSF1A expression inhibited the malignant phenotypes of NPC cells. Stable silencing of RASSF1A in NPC cell lines induced self-renewal properties and tumorigenicity in vivo/in vitro and the acquisition of an invasive phenotype in vitro. Mechanistically, RASSF1A inactivated Yes-associated Protein 1 (YAP1), a transcriptional coactivator, through actin remodeling, which further contributed to Platelet Derived Growth Factor Subunit B (PDGFB) transcription inhibition. Treatment with ectopic PDGFB partially increased the malignancy of NPC cells with transient knockdown of YAP1. Collectively, these findings suggest that RASSF1A inhibits malignant phenotypes by repressing PDGFB expression in a YAP1-dependent manner. PDGFB may serve as a potential interest of therapeutic regulators in patients with metastatic NPC.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Li ◽  
Shuangqing Yang ◽  
Huaqing Ma ◽  
Mengjia Ruan ◽  
Luyan Fang ◽  
...  

Abstract Background Cervical cancer is a type of the most common gynecology tumor in women of the whole world. Accumulating data have shown that icariin (ICA), a natural compound, has anti-cancer activity in different cancers, including cervical cancer. The study aimed to reveal the antitumor effects and the possible underlying mechanism of ICA in U14 tumor-bearing mice and SiHa cells. Methods The antitumor effects of ICA were investigated in vivo and in vitro. The expression of TLR4/MyD88/NF-κB and Wnt/β-catenin signaling pathways were evaluated. Results We found that ICA significantly suppressed tumor tissue growth and SiHa cells viability in a dose-dependent manner. Also, ICA enhanced the anti-tumor humoral immunity in vivo. Moreover, ICA significantly improved the composition of the microbiota in mice models. Additionally, the results clarified that ICA significantly inhibited the migration, invasion capacity, and expression levels of TGF-β1, TNF-α, IL-6, IL-17A, IL-10 in SiHa cells. Meanwhile, ICA was revealed to promote the apoptosis of cervical cancer cells by down-regulating Ki67, survivin, Bcl-2, c-Myc, and up-regulating P16, P53, Bax levels in vivo and in vitro. For the part of mechanism exploration, we showed that ICA inhibits the inflammation, proliferation, migration, and invasion, as well as promotes apoptosis and immunity in cervical cancer through impairment of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Conclusions Taken together, ICA could be a potential supplementary agent for cervical cancer treatment.


2010 ◽  
Vol 297 (2) ◽  
pp. 190-197 ◽  
Author(s):  
Zizhen Feng ◽  
Shuangbing Xu ◽  
Mengzhong Liu ◽  
Yi-Xin Zeng ◽  
Tiebang Kang

2021 ◽  
Vol 22 (3) ◽  
pp. 1407
Author(s):  
Hongxia Liu ◽  
Wang Zheng ◽  
Qianping Chen ◽  
Yuchuan Zhou ◽  
Yan Pan ◽  
...  

Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Lifeng Feng ◽  
Miaoqin Chen ◽  
Yiling Li ◽  
Muchun Li ◽  
Shiman Hu ◽  
...  

Abstractp62/SQSTM1 is frequently up-regulated in many cancers including hepatocellular carcinoma. Highly expressed p62 promotes hepato-carcinogenesis by activating many signaling pathways including Nrf2, mTORC1, and NFκB signaling. However, the underlying mechanism for p62 up-regulation in hepatocellular carcinoma remains largely unclear. Herein, we confirmed that p62 was up-regulated in hepatocellular carcinoma and its higher expression was associated with shorter overall survival in patients. The knockdown of p62 in hepatocellular carcinoma cells decreased cell growth in vitro and in vivo. Intriguingly, p62 protein stability could be reduced by its acetylation at lysine 295, which was regulated by deacetylase Sirt1 and acetyltransferase GCN5. Acetylated p62 increased its association with the E3 ligase Keap1, which facilitated its poly-ubiquitination-dependent proteasomal degradation. Moreover, Sirt1 was up-regulated to deacetylate and stabilize p62 in hepatocellular carcinoma. Additionally, Hepatocyte Sirt1 conditional knockout mice developed much fewer liver tumors after Diethynitrosamine treatment, which could be reversed by the re-introduction of exogenous p62. Taken together, Sirt1 deacetylates p62 at lysine 295 to disturb Keap1-mediated p62 poly-ubiquitination, thus up-regulating p62 expression to promote hepato-carcinogenesis. Therefore, targeting Sirt1 or p62 is a reasonable strategy for the treatment of hepatocellular carcinoma.


Blood ◽  
2021 ◽  
Author(s):  
Alexandra Sipol ◽  
Erik Hameister ◽  
Busheng Xue ◽  
Julia Hofstetter ◽  
Maxim Barenboim ◽  
...  

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired anti-metabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is to reprogram gene expression in a metabolism-dependent manner. MondoA (also known as MLXIP), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets we found that MondoA overexpression is associated with a worse survival in pediatric common acute lymphoblastic leukemia (B-ALL). Using CRISPR/Cas9 and RNA interference approaches, we observed that MondoA depletion reduces transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid (TCA) cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced PDH activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give a novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


2020 ◽  
Author(s):  
Chuan-jiang Liu ◽  
Qiang Fu ◽  
Wenjing Zhou ◽  
Xu Zhang ◽  
Rui Chen ◽  
...  

Abstract Background: Methylprednisolone (MP) is a synthetic corticosteroid with potent anti-inflammatory and antioxidant properties used as therapy for a variety of diseases. The underlying mechanism of MP to reduce acute pancreatitis still needs to be elucidated.Methods: Twenty-four male C57BL/6 mice (6-8 weeks) were used to establish SAP mouse model by administering an intraperitoneal injection of Cae and LPS. Amylase expression levels of serum and PLF were measured with an amylase assay kit. The concentrations of IL-1β and TNF-α in the serum and PLF were detected by ELISA. The level of pancreatic and lung tissue damage and inflammation was assessed by H&E staining and immunofluorescence staining. Western blot and qPCR were used to detect the expression levels of NLRP3, IL-1β and TNF-αin vivo and in vitro.Results: In this study, we found MP, used in the early phase of SAP, decreased the levels of IL-1β and TNF-α in serum and peritoneal lavage fluids (PLF), reduced the level of serum amylase and the expression of MPO in lung tissue, attenuated the pathological injury of the pancreas and lungs in a dose-dependent manner. The expression of NLRP3 and IL-1β in pancreas and lungs was down-regulated significantly depending on the MP concentration. In vitro, MP reduced the levels of IL-1β and TNF-α by down-regulating the expression of NLRP3, IL-1β and p-NF-κB in isolated peritoneal macrophages. Conclusion: MP can attenuate the injury of pancreas and lungs, and the inflammatory response in SAP mice by down-regulating the activation of NF-κB and the NLRP3 inflammasome.


2021 ◽  
Author(s):  
Feng Ying Zhang ◽  
Xia Li ◽  
Ting Ting Huang ◽  
Mei Ling Xiang ◽  
Lin Lin Sun ◽  
...  

Abstract Background Long intergenic non-coding RNA 00839 (LINC00839) has been verified as a cancer-promoting gene in malignancies. However, the significance of LINC00839 in nasopharyngeal carcinoma (NPC) has yet to be elaborated, as well as its underlying mechanism.Methods LINC00839 and miR-454-3p relative expression levels in NPC cells were examined by qRT-PCR. The growth of cells was examined by CCK-8 and colony formation assays. Cell migration and invasion were examined by wound healing and Transwell experiment, respectively. The binding sequence of LINC00839 and miR-454-3p was confirmed by the luciferase reporter gene experiment. The regulatory function of LINC00839 and miR-454-3p on c-Met was investigated by western blot.Results Here, we revealed that LINC00839 was elevated in NPC. Both LINC00839 knockdown and upregulation of miR-454-3p suppressed NPC cells proliferation, invasive capacity and EMT in vitro. Besides, LINC00839 was validated as a miR-454-3p “sponge”, and upregulation of LINC00839 could reverse miR-454-3p-mediated functions in NPC C666-1 and SUNE-1 cells. Furthermore, c-Met was determined to be targeted by miR-454-3p. Notably, c-Met was downregulated by LINC00839 knockdown through sponging miR-454-3p. In vivo, LINC00839 knockdown resulted in a slower tumor growth.Conclusions Altogether, knockdown of LINC00839 inhibits the aggressive properties of NPC cells via sponging miR-454-3p and regulating c-Met.


Author(s):  
Pingping Jia ◽  
Yi Zhang ◽  
Jian Xu ◽  
Mei Zhu ◽  
Shize Peng ◽  
...  

Abstract Background Resistance to anti-tuberculosis (TB) drug is a major issue in TB control, and demands the discovery of new drugs targeting virulence factor ESX-1. Methods We first established a high-throughput screen (HTS) assay for the discovery of ESX-1 secretion inhibitors. The positive hits were then evaluated for the potency of diminishing the survival of virulent mycobacterium and reducing bacterial virulence. We further investigated the probability of inducing drug-resistance and the underlying mechanism using M-PFC. Results A robust HTS assay was developed to identify small molecules that inhibit ESX-1 secretion without impairing bacterial growth in vitro. A hit named IMB-BZ specifically inhibits the secretion of CFP-10 and reduces virulence in an ESX-1-dependent manner, therefore resulting in significant reduction in intracellular and in vivo survival of mycobacteria. Blocking the CFP-10-EccCb1 interaction directly or indirectly underlies the inhibitory effect of IMB-BZ on the secretion of CFP-10. Importantly, our finding shows that the ESX-1 inhibitors pose low risk of drug resistance development by mycobacteria in vitro as compared with traditional anti-TB drug, and exhibit high potency against chronic mycobacterial infection. Conclusion Targeting ESX-1 may lead to the development of novel therapeutics for tuberculosis. IMB-BZ holds the potential for future development into a new anti-TB drug.


Sign in / Sign up

Export Citation Format

Share Document