Percutaneous Lumbar Pedicle Screws: Indications,Technique, Results

Author(s):  
G.E. Rodts, Jr.
2020 ◽  
Vol 32 (4) ◽  
pp. 542-547 ◽  
Author(s):  
Huan Liu ◽  
Junlong Wu ◽  
Yu Tang ◽  
Haiyin Li ◽  
Wenkai Wang ◽  
...  

OBJECTIVEThe authors aimed to assess, in a bone-agar experimental setting, the feasibility and accuracy of percutaneous lumbar pedicle screw placements using an intraoperative CT image–based augmented reality (AR)–guided method compared to placements using a radiograph-guided method. They also compared two AR hologram alignment methods.METHODSTwelve lumbar spine sawbones were completely embedded in hardened opaque agar, and a cubic marker was fixed on each phantom. After intraoperative CT, a 3D model of each phantom was generated, and a specialized application was deployed into an AR headset (Microsoft HoloLens). One hundred twenty pedicle screws, simulated by Kirschner wires (K-wires), were placed by two experienced surgeons, who each placed a total of 60 screws: 20 placed with a radiograph-guided technique, 20 with an AR technique in which the hologram was manually aligned, and 20 with an AR technique in which the hologram was automatically aligned. For each K-wire, the insertion path was expanded to a 6.5-mm diameter to simulate a lumbar pedicle screw. CT imaging of each phantom was performed after all K-wire placements, and the operative time required for each K-wire placement was recorded. An independent radiologist rated all images of K-wire placements. Outcomes were classified as grade I (no pedicle perforation), grade II (screw perforation of the cortex by up to 2 mm), or grade III (screw perforation of the cortex by > 2 mm). In a clinical situation, placements scored as grade I or II would be acceptable and safe for patients.RESULTSAmong all screw placements, 75 (94%) of 80 AR-guided placements and 40 (100%) of 40 radiograph-guided placements were acceptable (i.e., grade I or II; p = 0.106). Radiograph-guided placements had more grade I outcomes than the AR-guided method (p < 0.0001). The accuracy of the two AR alignment methods (p = 0.526) was not statistically significantly different, and neither was it different between the AR and radiograph groups (p < 0.0001). AR-guided placements required less time than the radiograph-guided placements (mean ± standard deviation, 131.76 ± 24.57 vs 181.43 ± 15.82 seconds, p < 0.0001). Placements performed using the automatic-alignment method required less time than those using the manual-alignment method (124.20 ± 23.80 vs 139.33 ± 23.21 seconds, p = 0.0081).CONCLUSIONSIn bone-agar experimental settings, AR-guided percutaneous lumbar pedicle screw placements were acceptable and more efficient than radiograph-guided placements. In a comparison of the two AR-guided placements, the automatic-alignment method was as accurate as the manual method but more efficient. Because of some limitations, the AR-guided system cannot be recommended in a clinical setting until there is significant improvement of this technology.


2019 ◽  
pp. 178-182
Author(s):  
Umit Kocaman ◽  
Hakan Yilmaz

Background. The aim of this study was to evaluate screw pull-out rates after fusion operations with short and thin pedicle screws.Methods. A total of 200 posterior lumbar and thoracolumbar fusion operations performed at our clinic with short and thin pedicle screws (5.5x35 mm) were retrospectively evaluated. The patients were assessed with computed tomography postoperatively on the day of surgery and at the 6th month. Single groove retraction of the transpedicular screw was evaluated as pull-out. The results were evaluated by the 'number of pull-out cases / total number of cases' and also the 'total number of pull-out screws / total number of screws used' ratios. Results. There were 112 (56%) female and 88 (44%) male patients with a mean age of 58 years. The total number of screws used in the 200 cases was 1188. There were 88 (7.4%) thoracic pedicle screws, 1056 (88.9%) lumbar pedicle screws and 44 (3.7%) sacral pedicle screws used. No pull-out was found in the control CTs taken postoperatively. Left side T11 and T12 pull-out was observed in one case and left L4 pull-out was observed in another case in the control CTs taken at the postoperative 6th month. Pull-out was observed in 2 (1%) of the 200 cases and 3 (0.25%) of the 1188 screws.Conclusions. All the short and thin pedicle screws used had passed the pedicle length and neurocentral junction. The use of a 5.5x35 mm screws in fusion operations is less invasive than using longer and thicker screws while the pull-out rates may be similar.


2021 ◽  
Vol 12 ◽  
pp. 518
Author(s):  
Mohamed M. Arnaout ◽  
Magdy O. ElSheikh ◽  
Mansour A. Makia

Background: Transpedicular screws are extensively utilized in lumbar spine surgery. The placement of these screws is typically guided by anatomical landmarks and intraoperative fluoroscopy. Here, we utilized 2-week postoperative computed tomography (CT) studies to confirm the accuracy/inaccuracy of lumbar pedicle screw placement in 145 patients and correlated these findings with clinical outcomes. Methods: Over 6 months, we prospectively evaluated the location of 612 pedicle screws placed in 145 patients undergoing instrumented lumbar fusions addressing diverse pathology with instability. Routine anteroposterior and lateral plain radiographs were obtained 48 h after the surgery, while CT scans were obtained at 2 postoperative weeks (i.e., ideally these should have been performed intraoperatively or within 24–48 h of surgery). Results: Of the 612 screws, minor misplacement of screws (≤2 mm) was seen in 104 patients, moderate misplacement in 34 patients (2–4 mm), and severe misplacement in 7 patients (>4 mm). Notably, all the latter 7 (4.8% of the 145) patients required repeated operative intervention. Conclusion: Transpedicular screw insertion in the lumbar spine carries the risks of pedicle medial/lateral violation that is best confirmed on CT rather than X-rays/fluoroscopy alone. Here, we additional found 7 patients (4.8%) who with severe medial/lateral pedicle breach who warranting repeated operative intervention. In the future, CT studies should be performed intraoperatively or within 24–48 h of surgery to confirm the location of pedicle screws and rule in our out medial or lateral pedicle breaches.


2007 ◽  
pp. 229-235
Author(s):  
Daniel R. Fassett ◽  
Darrel S. Brodke

2010 ◽  
Vol 13 (4) ◽  
pp. 509-515 ◽  
Author(s):  
Cary Idler ◽  
Kevin W. Rolfe ◽  
Josef E. Gorek

Object This study was conducted to assess the in vivo safety and accuracy of percutaneous lumbar pedicle screw placement using the owl's-eye view of the pedicle axis and a new guidance technology system that facilitates orientation of the C-arm into the appropriate fluoroscopic view and the pedicle cannulation tool in the corresponding trajectory. Methods A total of 326 percutaneous pedicle screws were placed from L-3 to S-1 in 85 consecutive adult patients. Placement was performed using simple coaxial imaging of the pedicle with the owl's-eye fluoroscopic view. NeuroVision, a new guidance system using accelerometer technology, helped align the C-arm trajectory into the owl's-eye view and the cannulation tool in the same trajectory. Postoperative fine-cut CT scans were acquired to assess screw position. Medical records were reviewed for complications. Results Five of 326 screws breached a pedicle cortex—all breaches were less than 2 mm—for an accuracy rate of 98.47%. Five screws violated an adjacent facet joint. All were at the S-1 superior facet and included in a fusion. No screw violated an adjacent mobile facet or disc space. There were no cases of new or worsening neurological symptoms or deficits for an overall clinical accuracy of 100%. Conclusions The owl's-eye technique of coaxial pedicle imaging with the C-arm fluoroscopy, facilitated by NeuroVision, is a safe and accurate means by which to place percutaneous pedicle screws for degenerative conditions of the lumbar spine. This is the largest series reported to use the oblique or owl's-eye projection for percutaneous pedicle screw insertion. The accuracy of percutaneous screw insertion with this technique meets or exceeds that of other reported clinical series or techniques.


2004 ◽  
Vol 17 (4) ◽  
pp. 272-276 ◽  
Author(s):  
Mark R Mikles ◽  
Ferhan A Asghar ◽  
Elizabeth P Frankenburg ◽  
Derek S Scott ◽  
Greg P Graziano

2022 ◽  
Vol 52 (1) ◽  
pp. E8

OBJECTIVE Pedicle screw insertion for stabilization after lumbar fusion surgery is commonly performed by spine surgeons. With the advent of navigation technology, the accuracy of pedicle screw insertion has increased. Robotic guidance has revolutionized the placement of pedicle screws with 2 distinct radiographic registration methods, the scan-and-plan method and CT-to-fluoroscopy method. In this study, the authors aimed to compare the accuracy and safety of these methods. METHODS A retrospective chart review was conducted at 2 centers to obtain operative data for consecutive patients who underwent robot-assisted lumbar pedicle screw placement. The newest robotic platform (Mazor X Robotic System) was used in all cases. One center used the scan-and-plan registration method, and the other used CT-to-fluoroscopy for registration. Screw accuracy was determined by applying the Gertzbein-Robbins scale. Fluoroscopic exposure times were collected from radiology reports. RESULTS Overall, 268 patients underwent pedicle screw insertion, 126 patients with scan-and-plan registration and 142 with CT-to-fluoroscopy registration. In the scan-and-plan cohort, 450 screws were inserted across 266 spinal levels (mean 1.7 ± 1.1 screws/level), with 446 (99.1%) screws classified as Gertzbein-Robbins grade A (within the pedicle) and 4 (0.9%) as grade B (< 2-mm deviation). In the CT-to-fluoroscopy cohort, 574 screws were inserted across 280 lumbar spinal levels (mean 2.05 ± 1.7 screws/ level), with 563 (98.1%) grade A screws and 11 (1.9%) grade B (p = 0.17). The scan-and-plan cohort had nonsignificantly less fluoroscopic exposure per screw than the CT-to-fluoroscopy cohort (12 ± 13 seconds vs 11.1 ± 7 seconds, p = 0.3). CONCLUSIONS Both scan-and-plan registration and CT-to-fluoroscopy registration methods were safe, accurate, and had similar fluoroscopy time exposure overall.


2020 ◽  
Vol 26 ◽  
Author(s):  
Yue Gu ◽  
Qingqiang Yao ◽  
Yan Xu ◽  
Huikang Zhang ◽  
Peiran Wei ◽  
...  

2002 ◽  
Vol 97 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Kevin T. Foley ◽  
Sanjay K. Gupta

Object. Standard techniques for pedicle screw fixation of the lumbar spine involve open exposures and extensive muscle dissection. The purpose of this study was to report the initial clinical experience with a novel device for percutaneous posterior fixation of the lumbar spine. Methods. An existing multiaxial lumbar pedicle screw system was modified to allow screws to be placed percutaneously by using an extension sleeve that permits remote manipulation of the polyaxial screw heads and remote engagement of the screw-locking mechanism. A unique rod-insertion device was developed that linked to the screw extension sleeves, allowing for a precut and -contoured rod to be placed through a small stab wound. Because the insertion device relies on the geometrical constraint of the rod pathway through the screw heads, minimal manipulation is required to place the rods in a standard submuscular position, there is essentially no muscle dissection, and the need for direct visual feedback is avoided. Twelve patients (six men and six women) who ranged in age from 23 to 68 years underwent pedicle screw fixation in which the rod-insertion device was used. Spondylolisthesis was present in 10 patients and osseous nonunion of a prior interbody fusion was present in two. All patients underwent successful percutaneous fixation. Ten patients underwent single-level fusions (six at L5—S1, three at L4–5, and one at L2–3), and two underwent two-level fusions (one from L3–5 and the other from L4—S1). The follow-up period ranged from 10 to 19 months (mean 13.8 months). Conclusions. Although percutaneous lumbar pedicle screw placement has been described previously, longitudinal connector (rod or plate) insertion has been more problematic. The device used in this study allows for straightforward placement of lumbar pedicle screws and rods through percutaneous stab wounds. Paraspinous tissue trauma is minimized without compromising the quality of spinal fixation. Preliminary experience involving the use of this device has been promising.


Sign in / Sign up

Export Citation Format

Share Document