scholarly journals Neuroimaging Predictors of Cognitive Impairment in Confluent White Matter Lesion: Volumetric Analyses of 99 Brain Regions

2007 ◽  
Vol 25 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Vincent C.T. Mok ◽  
Tianming Liu ◽  
Wynnie W.M. Lam ◽  
Adrian Wong ◽  
Xintao Hu ◽  
...  
2021 ◽  
pp. 1-14
Author(s):  
Fangmei He ◽  
Yuchen Zhang ◽  
Xiaofeng Wu ◽  
Youjun Li ◽  
Jie Zhao ◽  
...  

Background: Amnestic mild cognitive impairment (aMCI) is the transitional stage between normal aging and Alzheimer’s disease (AD). Some aMCI patients will progress into AD eventually, whereas others will not. If the trajectory of aMCI can be predicted, it would enable early diagnosis and early therapy of AD. Objective: To explore the development trajectory of aMCI patients, we used diffusion tensor imaging to analyze the white matter microstructure changes of patients with different trajectories of aMCI. Methods: We included three groups of subjects:1) aMCI patients who convert to AD (MCI-P); 2) aMCI patients who remain in MCI status (MCI-S); 3) normal controls (NC). We analyzed the fractional anisotropy and mean diffusion rate of brain regions, and we adopted logistic binomial regression model to predicate the development trajectory of aMCI. Results: The fraction anisotropy value is significantly reduced, the mean diffusivity value is significantly increased in the two aMCI patient groups, and the MCI-P patients presented greater changes. Significant changes are mainly located in the cingulum, fornix, hippocampus, and uncinate fasciculus. These changed brain regions significantly correlated with the patient’s Mini-Mental State Examination scores. Conclusion: The study predicted the disease trajectory of different types of aMCI patients based on the characteristic values of the above-mentioned brain regions. The prediction accuracy rate can reach 90.2%, and the microstructure characteristics of the right cingulate band and the right hippocampus may have potential clinical application value to predict the disease trajectory.


2019 ◽  
Vol 26 (13) ◽  
pp. 1708-1718 ◽  
Author(s):  
Miklos Palotai ◽  
Michele Cavallari ◽  
Ismail Koubiyr ◽  
Alfredo Morales Pinzon ◽  
Aria Nazeri ◽  
...  

Background: Fatigue in multiple sclerosis (MS) has been inconsistently associated with disruption of specific brain circuitries. Temporal fluctuations of fatigue have not been considered. Objective: The aim of this study was to investigate the association of fatigue with brain diffusion abnormalities, using robust criteria for patient stratification based on longitudinal patterns of fatigue. Methods: Patient stratification: (1) sustained fatigue (SF, n = 26): latest two Modified Fatigue Impact Scale (MFIS) ⩾ 38; (2) reversible fatigue (RF, n = 25): latest MFIS < 38 and minimum one previous MFIS ⩾ 38; and (3) never fatigued (NF, n = 42): MFIS always < 38 (five assessments minimum). 3T brain magnetic resonance imaging (MRI) was used to perform voxel-wise comparison of fractional anisotropy (FA) between the groups controlling for age, sex, disease duration, physical disability, white matter lesion load (T2LV), and depression. Results: SF and, to a lesser extent, RF patients showed lower FA in multiple brain regions compared to NF patients, independent of age, sex, disease duration, and physical disability. In cingulo-postcommissural-striato-thalamic regions, the differences in FA between SF and NF (but not between RF and NF or SF) patients were independent of T2LV, and in ventromedial prefronto-precommissuro-striatal and temporo-insular areas, independent of T2LV and depression. Conclusion: Damage to ventromedial prefronto-precommissuro-striatal and temporo-insular pathways appears to be a specific substrate of SF in MS.


2019 ◽  
Vol Volume 15 ◽  
pp. 1355-1363 ◽  
Author(s):  
Jinfang Wang ◽  
Yi Liang ◽  
Hongyan Chen ◽  
Wanming Wang ◽  
Yanwen Wang ◽  
...  

2009 ◽  
Vol 15 (6) ◽  
pp. 906-914 ◽  
Author(s):  
LISA DELANO-WOOD ◽  
MARK W. BONDI ◽  
JOSHUA SACCO ◽  
NORM ABELES ◽  
AMY J. JAK ◽  
...  

AbstractThis study examined whether distinct neuropsychological profiles could be delineated in a sample with Mild Cognitive Impairment (MCI) and whether white matter lesion (WML) burden contributed to MCI group differences. A heterogeneous, clinical sample of 70 older adults diagnosed with MCI was assessed using cognitive scores, and WML was quantified using a semi-automated, volumetric approach on T2-weighted fluid-attenuated inversion recovery (FLAIR) images. Using cluster and discriminant analyses, three distinct groups (Memory/Language, Executive/Processing Speed, and Pure Memory) were empirically derived based on cognitive scores. Results also showed a dose dependent relationship of WML burden to MCI subgroup, with the Executive/Processing Speed subgroup demonstrating significantly higher levels of WML pathology when compared to the other subgroups. In addition, there was a dissociation of lesion type by the two most impaired subgroups (Memory/Language and Executive/Processing Speed) such that the Memory/Language subgroup showed higher periventricular lesion (PVL) and lower deep white matter lesion (DWML) volumes, whereas the Executive/Processing Speed demonstrated higher DWML and lower PVL volumes. Results demonstrate that distinct MCI subgroups can be empirically derived and reliably differentiated from a heterogeneous MCI sample, and that these profiles differ according to WML burden. Overall, findings suggest different underlying pathologies within MCI and contribute to our understanding of MCI subtypes. (JINS, 2009, 15, 906–914.)


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Fanny Quandt ◽  
Felix Fischer ◽  
Julian Schröder ◽  
Marlene Heinze ◽  
Iris Lettow ◽  
...  

Abstract Cerebral small vessel disease is a common disease in the older population and is recognized as a major risk factor for cognitive decline and stroke. Small vessel disease is considered a global brain disease impacting the integrity of neuronal networks resulting in disturbances of structural and functional connectivity. A core feature of cerebral small vessel disease commonly present on neuroimaging is white matter hyperintensities. We studied high-resolution resting-state EEG, leveraging source reconstruction methods, in 35 participants with varying degree of white matter hyperintensities without clinically evident cognitive impairment in an observational study. In patients with increasing white matter lesion load, global theta power was increased independently of age. Whole-brain functional connectivity revealed a disrupted network confined to the alpha band in participants with higher white matter hyperintensities lesion load. The decrease of functional connectivity was evident in long-range connections, mostly originating or terminating in the frontal lobe. Cognitive testing revealed no global cognitive impairment; however, some participants revealed deficits of executive functions that were related to larger white matter hyperintensities lesion load. In summary, participants without clinical signs of mild cognitive impairment or dementia showed oscillatory changes that were significantly related to white matter lesion load. Hence, oscillatory neuronal network changes due to white matter lesions might act as biomarker prior to clinically relevant behavioural impairment.


2011 ◽  
Vol 31 (2) ◽  
pp. 132-138 ◽  
Author(s):  
C. Eckerström ◽  
E. Olsson ◽  
N. Klasson ◽  
M. Bjerke ◽  
M. Göthlin ◽  
...  

2021 ◽  
Vol 14 ◽  
Author(s):  
Chang Li ◽  
Rongbing Jin ◽  
Kaijun Liu ◽  
Yang Li ◽  
Zhiwei Zuo ◽  
...  

Type 2 diabetes mellitus (T2DM) patients are highly susceptible to developing dementia, especially for those with mild cognitive impairment (MCI), but its underlying cause is still unclear. In this study, we performed a battery of neuropsychological tests and high-resolution sagittal T1-weighted structural imaging to explore how T2DM affects white matter volume (WMV) and cognition in 30 T2DM-MCI patients, 30 T2DM with normal cognition (T2DM-NC) patients, and 30 age-, sex-, and education-matched healthy control (HC) individuals. The WMV of the whole brain was obtained with automated segmentation methods. Correlations between the WMV of each brain region and neuropsychological tests were analyzed in the T2DM patients. The T2DM-NC patients and HC individuals did not reveal any significant differences in WMV. Compared with the T2DM-NC group, the T2DM-MCI group showed statistically significant reduction in the WMV of seven brain regions, mainly located in the frontotemporal lobe and limbic system, five of which significantly correlated with Montreal Cognitive Assessment (MoCA) scores. Subsequently, we evaluated the discriminative ability of these five regions for MCI in T2DM patients. The WMV of four regions, including left posterior cingulate, precuneus, insula, and right rostral middle frontal gyrus had high diagnostic value for MCI detection in T2DM patients (AUC &gt; 0.7). Among these four regions, left precuneus WMV presented the best diagnostic value (AUC: 0.736; sensitivity: 70.00%; specificity: 73.33%; Youden index: 0.4333), but with no significant difference relative to the minimum AUC. In conclusion, T2DM could give rise to the white matter atrophy of several brain regions. Each WMV of left posterior cingulate, precuneus, insula, and right rostral middle frontal gyrus could be an independent imaging biomarker to detect cognitive impairment at the early stage in T2DM patients and play an important role in its pathophysiological mechanism.


Sign in / Sign up

Export Citation Format

Share Document