Changes in bone density and cortical thickness of the second metacarpal between the ages of 3 and 74 years as a method for investigating bone mineral metabolism

1967 ◽  
Vol 67 (1) ◽  
pp. 74-94 ◽  
Author(s):  
N. Wolański
Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 616
Author(s):  
Mateusz Bosiacki ◽  
Izabela Gutowska ◽  
Katarzyna Piotrowska ◽  
Anna Lubkowska

Exposure to low temperatures can be considered a stressor, which when applied for a specific time can lead to adaptive reactions. In our study we hypothesized that cold, when applied to the entire body, may be a factor that positively modifies the aging process of bones by improving the mechanisms related to the body’s mineral balance. Taking the above into account, the aim of the study was to determine the concentration of calcium (Ca), magnesium (Mg), and phosphorus (P) in bones, and to examine bone density and concentrations of the key hormones for bone metabolism, namely parathyroid hormone (PTH), somatotropin (GH), 1,25-dihydroxyvitamin D3, 17-β estradiol, testosterone (T) in plasma, and prostaglandin E2 (PGE2) in the bone of aging rats subjected to physical training in cold water. The animals in the experiment were subjected to a series of swimming sessions for nine weeks. Study group animals (male and female respectively) performed swimming training in cold water at 5 ± 2 °C and in water with thermal comfort temperature (36 ± 2 °C). Control animals were kept in a sedentary condition. Immersion in cold water affects bone mineral metabolism in aging rats by changing the concentration of Ca, Mg, and P in the bone, altering bone mineral density and the concentration of key hormones involved in the regulation of bone mineral metabolism. The effect of cold-water immersion may be gender-dependent. In females, it decreases Ca and Mg content in bones while increasing bone density and 17-β estradiol and 1,25-dihydroxyvitamin D3 levels, and with a longer perspective in aging animals may be positive not only for bone health but also other estrogen-dependent tissues. In males, cold water swimming decreased PTH and PGE2 which resulted in a decrease in phosphorus content in bones (with no effect on bone density), an increase in 1,25-dihydroxyvitamin D3, and increase in T and GH, and may have positive consequences especially in bones and muscle tissue for the prevention of elderly sarcopenia.


2010 ◽  
Vol 13 (4) ◽  
pp. 462-466 ◽  
Author(s):  
Dinesh Kumar Dhanwal ◽  
Narayana Kochupillai ◽  
Nandita Gupta ◽  
Cyrus Cooper ◽  
Elaine M. Dennison

1986 ◽  
Vol 39 (4) ◽  
pp. 230-233 ◽  
Author(s):  
F. Ismail ◽  
S. Epstein ◽  
R. Pacifici ◽  
D. Droke ◽  
S. B. Thomas ◽  
...  

2021 ◽  
Vol 19 (2) ◽  
pp. 26-29
Author(s):  
X Lourdes Sandy ◽  

Background: The most common endocrine disorder is hypothyroidism which accounts to 11%. Thyroid hormones have a wide array of functions such as physiological growth and development of skeletal system, maintenance of basal metabolic rate and regulation of various metabolisms, including mineral metabolism. Nowadays due to its direct action on bone turn over, thyroid hormones are considered to have an important role on bone mineral metabolism. Thyroid disorders are important cause for secondary osteoporosis. So the present study was done to know the levels of bone minerals, calcium and phosphorus in hypothyroidism and its relation with thyroid hormone levels. Methods: A case-control study was conducted on 30 hypothyroid patients and 30 euthyroid healthy controls in the age group of 20-60 years. Blood samples were collected from all the study population. Serum total triiodothyronine, total thyroxine and TSH by Enzyme-Linked Immunosorbent Assay, Serum calcium by Arsenazo III method, phosphorous by ammonium molybdate method were estimated. Results: Serum calcium levels in cases was found to significantly reduced when compared to controls (p<0.001). Serum phosphorous levels also showed considerable elevation in cases when compared to controls (p<0.001). There was a significant negative correlation between TSH and serum calcium in cases. Conclusion: The present study indicated the important role of reduced thyroid hormone status on bone mineral metabolism. This study concludes that serum calcium was significantly reduced and phosphorus levels were significantly increased in hypothyroid patients when compared to euthyroid control subjects. So frequent monitoring of serum calcium and phosphorus in hypothyroid patients would reduce the burden of bone pathologies.


Sign in / Sign up

Export Citation Format

Share Document