Synthesis of Thromboplastin (Factor III) in Mouse Placental Cells in vitro

1983 ◽  
Vol 15 (6) ◽  
pp. 351-361 ◽  
Author(s):  
K. Dalaker ◽  
A. Kaplun ◽  
T. Lyberg ◽  
H. Prydz
1985 ◽  
Vol 54 (02) ◽  
pp. 438-441 ◽  
Author(s):  
K Dalaker ◽  
E Haug ◽  
H Prydz

SummaryTrophoblasts from murine placenta synthesize thromboplastin in the absence of inducing agents and a functional complement system, nor is the rate or level of synthesis enhanced by inducers. A serum factor which is destroyed/removed by addition of oxalate and subsequent dialysis appears to enhance the ability of trophoblasts to synthesize thromboplastin.


2012 ◽  
Vol 259 (3) ◽  
pp. 366-375 ◽  
Author(s):  
Caroline Prouillac ◽  
Farah Koraichi ◽  
Bernadette Videmann ◽  
Michelle Mazallon ◽  
Frédéric Rodriguez ◽  
...  

1995 ◽  
Vol 147 (3) ◽  
pp. 423-429 ◽  
Author(s):  
M Yamaguchi ◽  
M Sakata ◽  
K Ogura ◽  
K Adachi ◽  
A Mammoto ◽  
...  

Abstract The effects of interleukin (IL)-1 and granulocytemacrophage colony stimulating factor (GM-CSF), which are present in the mouse placenta, on the secretion of mouse placental lactogen (mPL)-1 and mPL-II by placental cells were tested in vitro. IL-lα and IL-1β, 2·5 nmol/l each, significantly inhibited mPL-II secretion by cells from days 9 and 12 of pregnancy, but did not affect mPL-II secretion by cells from day 7 of pregnancy or mPL-I secretion by cells from days 7, 9 or 12 of pregnancy. GM-CSF had no effect on mPL-I and mPL-II secretion by cells from days 7, 9 or 12 of pregnancy. The inhibitory effects of IL-1α and IL-1β on mPL-II secretion were completely eliminated by the addition of antibodies to IL-1α and IL-1β respectively. Western blot analysis for mPL-II indicated that IL-1α significantly reduced the intensity of the mPL-II band. Steady-state levels of mPL-II mRNA, assessed by Northern blot analysis, were reduced by incubation of placental cells from day 12 of pregnancy with 2·5 nmol/l IL-1α for 5 days. Co-incubation of 0·25 pmol/l IL-1α, 25 pmol/l IL-6, and 25 pmol/l tumor necrosis factor-α, each of which did not significantly inhibit mPL-II secretion by itself, together inhibited mPL-II secretion. These results suggest that IL-1, but not GM-CSF, is a potent inhibitor of mPL-II secretion after mid-pregnancy, and that the combined action of cytokines can inhibit mPL-II secretion. Journal of Endocrinology (1995) 147, 423–429


Blood ◽  
1973 ◽  
Vol 41 (5) ◽  
pp. 671-678 ◽  
Author(s):  
Leo R. Zacharski ◽  
Leon W. Hoyer ◽  
O. Ross McIntyre

Abstract Immunologic methods were employed in an attempt to identify a potent procoagulant present in homogenates of human skin fibroblasts cultured in vitro. The activity of this procoagulant was restricted to the early stages of coagulation and was heretofore considered to be due to tissue factor (tissue thromboplastin, factor III) either alone or in combination with one or more of the first-stage coagulation factors (VIII, IX, XI, XII). The present studies demonstrated that procoagulant activity was not diminished by incubation with anti-VIII or anti-IX antibodies of human origin or with anti-VIII antibody of rabbit origin. Furthermore, cell culture homogenates failed to bind antifactor VIII antibody and did not contain an inhibitor of the reaction between factor VIII and its antibody. By contrast, procoagulant activity was obliterated by an antibody to tissue factor protein regardless of whether plasmas deficient in factor VIII, IX, XI, or XII were used in the assay system. The antitissue factor antibody failed to block the procoagulant effect after tissue factor had complexed factor VII. The procoagulant, therefore, consisted entirely of tissue factor.


2007 ◽  
Vol 293 (5) ◽  
pp. E1296-E1302 ◽  
Author(s):  
Nisha Antony ◽  
John J. Bass ◽  
Christopher D. McMahon ◽  
Murray D. Mitchell

Myostatin is a member of the transforming growth factor (TGF)-β superfamily, known for its ability to inhibit muscle growth. It can also regulate metabolism and glucose uptake in a number of tissues. To determine the mechanism of myostatin's effect on glucose uptake, we evaluated its actions using choriocarcinoma cell lines that are widely used as models for placental cells. Protein and mRNA were determined using immunoblotting and RT-PCR/PCR, respectively. Glucose uptake was assessed by uptake of radiolabeled deoxyglucose in vitro. All choriocarcinoma cell lines tested i.e., BeWo, JEG, and Jar, are used as models of placental cells, and all expressed myostatin protein and mRNA. Treatment of BeWo cells with myostatin resulted in inhibition of glucose uptake in a concentration-dependent manner ( P < 0.01). At all concentrations tested, follistatin, a functional inhibitor of myostatin, completely blocked the inhibitory effect of myostatin (40 nM) on glucose uptake by BeWo cells (0.4 nM, P < 0.05). Follistatin treatment alone also increased glucose uptake (0.4 and 4 nM, P < 0.001; 40 nM, P < 0.05). Because BeWo cells proliferated and greater cell densities were achieved, glucose uptake declined irrespective of treatment. Myostatin treatment of BeWo cells did not alter the levels of myostatin receptor, ActRII A/B proteins. The levels of glucose transport proteins also remained unaltered in BeWo cells with myostatin treatment. This study has shown that myostatin specifically inhibits glucose uptake into BeWo cells, suggesting that locally produced myostatin may control glucose metabolism within the placenta.


1983 ◽  
Vol 50 (04) ◽  
pp. 831-834 ◽  
Author(s):  
Knut Dalaker ◽  
Hans Prydz

SummaryMouse placental cells are probably constitutive producers of the thromboplastin apoprotein in vitro. The effect of cyclic AMP- elevating compounds on their expression of thromboplastin activity has been studied. Dibutyryl cyclic AMP, the phosphodiesterase inhibitor Ro 20-1724 and the adenyl cyclase stimulator forskolin all decrease the synthesis of thromboplastin. Prostaglandin E2 and the phosphodiesterase inhibitor butyl-methyl-xanthine have a biphasic dose dependent effect. A stimulation was observed at low concentrations, whereas higher doses decreased the synthesis of thromboplastin. Adrenaline had no effect. Combination of two compounds, each at maximally inhibiting concentration gave no significant additive inhibitory effect, showing that they probably act via the same pathway.


1996 ◽  
Vol 134 (1) ◽  
pp. 123-127 ◽  
Author(s):  
Masaaki Yamaguchi ◽  
Akira Miyake

Yamaguchi M. Miyake A. Regulation of mouse placental lactogen secretion by factors secreted from the pituitary in vitro. Eur J Endocrinol 1996;134:123–7. ISSN 0804–4643 The effect of factors secreted from the pituitary on mouse placental lactogen I (mPL-I) and mPL-II secretion in vitro was examined. Co-culture of mouse placental cells from day 7 of pregnancy with the pituitary cells of the mother significantly stimulated mPL-I secretion but did not regulate mPL-II secretion. The effect on mPL-I secretion was dependent on the number of pituitary cells. The conditioned medium of pituitary cells also significantly stimulated mPL-I secretion but did not regulate mPL-II secretion. The stimulatory effect of mPL-I secretion was dependent on the volume of the conditioned medium. The number of cells containing mPL-I assessed by immunocytochemistry was increased by the co-culture in a cell number-dependent manner. Northern blot analysis for mPL-I indicated that treatment of placental cells with the pituitary-conditioned medium results in an increase of mPL-I gene expression. These findings suggest that factors secreted from the pituitary directly regulate mPL-I secretion, but not mPL-II secretion, before midpregnancy in vivo. Masaaki Yamaguchi, Department of Obstetrics and Gynecology. Osaka University Medical School, 2-2 Yamadaoka, Suita. Osaka 565, Japan


Blood ◽  
1965 ◽  
Vol 26 (5) ◽  
pp. 521-532 ◽  
Author(s):  
WILLIAM E. HATHAWAY ◽  
LORETTA P. BELHASEN ◽  
HELEN S. HATHAWAY

Abstract Studies of defective plasma thromboplastin formation in four siblings indicated a defect which was different from any of the known coagulation factor deficiency states. Although none of the children had any history of hemorrhagic tendencies, a prolonged whole blood clotting time in an 11-year-old girl led to the findings of a markedly prolonged partial thromboplastin time (PTT), abnormal thromboplastin generation test (TGT), and a normal prothrombin time in the patient and in three of her ten siblings. The abnormal PTT and TGT were corrected by aluminum hydroxide adsorbed fresh plasma and by serum. Using the kaolin-PTT system, equal mixtures of plasma from the patients and normal plasma produced a normal time. In addition, plasmas deficient in plasma thromboplastin antecedent (PTA), Hageman factor (HF), antihemophilic factor (AHF), or plasma thromboplastin component (PTC) corrected the abnormality. Physical and chemical properties of plasma correcting the defect in vitro indicated that the defect is closely related to that found in PTA and HF deficient plasma.


Sign in / Sign up

Export Citation Format

Share Document