Mouse Trophoblast Cells Are Constitutive Producers of Thromboplastin (Factor III) In Vitro

1985 ◽  
Vol 54 (02) ◽  
pp. 438-441 ◽  
Author(s):  
K Dalaker ◽  
E Haug ◽  
H Prydz

SummaryTrophoblasts from murine placenta synthesize thromboplastin in the absence of inducing agents and a functional complement system, nor is the rate or level of synthesis enhanced by inducers. A serum factor which is destroyed/removed by addition of oxalate and subsequent dialysis appears to enhance the ability of trophoblasts to synthesize thromboplastin.

1987 ◽  
Vol 8 (5) ◽  
pp. 313-322 ◽  
Author(s):  
TAKASHI IWAMATSU ◽  
SUSUMU Y. TAKAHASHI ◽  
NORIYOSHI SAKAI ◽  
KAORI ASAI

2021 ◽  
Vol 22 (13) ◽  
pp. 7226
Author(s):  
Violeta Stojanovska ◽  
Aneri Shah ◽  
Katja Woidacki ◽  
Florence Fischer ◽  
Mario Bauer ◽  
...  

Cold shock Y-box binding protein-1 (YB-1) coordinates several molecular processes between the nucleus and the cytoplasm and plays a crucial role in cell function. Moreover, it is involved in cancer progression, invasion, and metastasis. As trophoblast cells share similar characteristics with cancer cells, we hypothesized that YB-1 might also be necessary for trophoblast functionality. In samples of patients with intrauterine growth restriction, YB-1 mRNA levels were decreased, while they were increased in preeclampsia and unchanged in spontaneous abortions when compared to normal pregnant controls. Studies with overexpression and downregulation of YB-1 were performed to assess the key trophoblast processes in two trophoblast cell lines HTR8/SVneo and JEG3. Overexpression of YB-1 or exposure of trophoblast cells to recombinant YB-1 caused enhanced proliferation, while knockdown of YB-1 lead to proliferative disadvantage in JEG3 or HTR8/SVneo cells. The invasion and migration properties were affected at different degrees among the trophoblast cell lines. Trophoblast expression of genes mediating migration, invasion, apoptosis, and inflammation was altered upon YB-1 downregulation. Moreover, IL-6 secretion was excessively increased in HTR8/SVneo. Ultimately, YB-1 directly binds to NF-κB enhancer mark in HTR8/SVneo cells. Our data show that YB-1 protein is important for trophoblast cell functioning and, when downregulated, leads to trophoblast disadvantage that at least in part is mediated by NF-κB.


1995 ◽  
Vol 43 (1) ◽  
pp. 304 ◽  
Author(s):  
D. Rath ◽  
H. Niemann ◽  
T. Tao ◽  
M. Boerjan

2021 ◽  
Vol 9 (10) ◽  
pp. e003163
Author(s):  
Mitchell Evers ◽  
Marjolein Stip ◽  
Kaylee Keller ◽  
Hanneke Willemen ◽  
Maaike Nederend ◽  
...  

BackgroundThe addition of monoclonal antibody therapy against GD2 to the treatment of high-risk neuroblastoma led to improved responses in patients. Nevertheless, administration of GD2 antibodies against neuroblastoma is associated with therapy-limiting neuropathic pain. This severe pain is evoked at least partially through complement activation on GD2-expressing sensory neurons.MethodsTo reduce pain while maintaining antitumor activity, we have reformatted the approved GD2 antibody ch14.18 into the IgA1 isotype. This novel reformatted IgA is unable to activate the complement system but efficiently activates leukocytes through the FcαRI (CD89).ResultsIgA GD2 did not activate the complement system in vitro nor induced pain in mice. Importantly, neutrophil-mediated killing of neuroblastoma cells is enhanced with IgA in comparison to IgG, resulting in efficient tumoricidal capacity of the antibody in vitro and in vivo.ConclusionsOur results indicate that employing IgA GD2 as a novel isotype has two major benefits: it halts antibody-induced excruciating pain and improves neutrophil-mediated lysis of neuroblastoma. Thus, we postulate that patients with high-risk neuroblastoma would strongly benefit from IgA GD2 therapy.


1993 ◽  
Vol 105 (3) ◽  
pp. 629-636 ◽  
Author(s):  
C. Rebut-Bonneton ◽  
S. Boutemy-Roulier ◽  
D. Evain-Brion

The morphological and functional differentiation of human trophoblast cells ends with the formation of terminally differentiated multinucleated syncytial trophoblasts. This in vivo differentiation is mimicked in vitro during the primary culture of extravillous cytotrophoblasts: isolated mononuclear cytotrophoblasts aggregate and fuse to form syncytia. This in vitro differentiation is associated with an increase in epidermal growth factor receptor (EGF-R) expression and a transitory increase in E-cadherin expression during cell aggregation. In the present study, we investigated the expression of pp60c-src during morphological differentiation of trophoblast cells. Cultures were terminated at various time intervals and pp60c-src was analysed by immunocytochemistry using a specific antibody. In addition, pp60c-src was investigated by western blot analysis and its tyrosine kinase activity was measured concomitantly. In mononuclear cytotrophoblasts, pp60c-src was localized at cell-matrix contacts and during the aggregation of cytotrophoblasts, pp60c-src was distributed on the cell surface at points of cell-cell contact being colocalized with EGF-R and E-cadherin. The kinase activity of the pp60c-src protein increased significantly at day 2 when cells were completely aggregated and started to fuse, and remained elevated while cells underwent further differentiation. Inhibition of pp60c-src by herbimycin A at 0.25 to 1 microgram/ml during the first day of culture was associated with a decreased expression of tyrosine kinase activity of EGF-R and an increase in E-cadherin expression. These data suggest that pp60c-src is involved in the modulation of trophoblast cell aggregation and fusion leading to syncytial formation.


1996 ◽  
Vol 109 (10) ◽  
pp. 2461-2469 ◽  
Author(s):  
T. Nagasaki ◽  
G.G. Gundersen

We reported earlier that isolated plasma membranes trigger a number of responses comprising contact inhibition of motility, including loss of oriented detyrosinated microtubules (Glu MTs) from the lamella of motile fibroblasts. In this study, we show that the membranes trigger this loss of Glu MTs, not by binding to cells, but by removing an essential component from the medium necessary to maintain oriented Glu MTs. Preincubation of membranes with medium containing serum followed by removal of the membranes by sedimentation rendered the membrane-treated medium capable of triggering the loss of oriented Glu MTs. Membrane activity was inhibited by high concentrations of serum and removal of serum from medium triggered the loss of oriented Glu MTs similar to that triggered by membranes. These results suggest that the membranes trigger the loss of Glu MTs by inactivating factors in serum that are required for the maintenance of oriented Glu MTs. By fractionating serum, we have identified lysophosphatidic acid (LPA) as the principal serum factor that is responsible for supporting oriented Glu MTs. The activity of LPA to maintain oriented Glu MTs upon serum withdrawal was half maximal at 100 nM and no activity was observed with structurally related phospholipids. Serum LPA levels were sufficient to account for the ability of serum to support oriented Glu MTs. Enzymatic degradation of serum LPA strongly reduced the ability of serum to support oriented Glu MTs. That membranes degrade LPA was shown by the ability of membranes to block LPA's ability to maintain oriented Glu MTs, and by direct measurement of the loss of radiolabeled LPA after incubation with membranes in vitro. These results show that isolated plasma membranes trigger the loss of Glu MTs from the lamella of motile cells by degrading serum LPA. Coupled with earlier results showing that membranes trigger a number of contact inhibition responses, our data suggest a new model for contact inhibition of motility in which local degradation of LPA and/or interference with LPA-stimulated signalling pathways initiates a contact inhibition response in colliding cells.


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1333-1339 ◽  
Author(s):  
P. Bhatnagar ◽  
V.E. Papaioannou ◽  
J.D. Biggers

The effects of macrophage colony stimulating factor on the development of the zygote to the blastocyst stage of an outbred strain of mouse have been studied in KSOM, an improved medium that supports a high rate of in vitro development. Macrophage colony stimulating factor accelerates the formation of the blastocyst cavity by day 4 (96 hours post-hCG). It also increases overall embryonic cell number through a differential increase in the number of trophoblast cells, with no significant effect on the number of inner cell mass cells. By day 5 of culture (120 hours post-hCG), colony stimulating factor-treated embryos have about 20 more trophoblast cells than control embryos, an increase of about 30 percent of the total number of cells in a control blastocyst. The maximum response of embryos was obtained at a concentration around 540 U ml-1 colony stimulating factor (identical to 918 Stanley units ml-1), and the cytokine can produce the same effects even if it is present in the medium for only part of the culture period. This in vitro stimulation of preimplantation development with macrophage colony stimulating factor is compatible with continued normal fetal development in vivo.


Development ◽  
1975 ◽  
Vol 33 (4) ◽  
pp. 979-990
Author(s):  
J. Rossant

Inner cell masses (ICMs) were dissected from 3½- and 4½-day blastocysts and cultured in contact with 2½-day morulae. Blastocysts and morulae were homozygous for different electrophoretic variants of the enzyme glucose phosphate isomerase (GPI). Aggregation of ICMs and morulae was observed, and such aggregates were able to form blastocysts in vitro and morphologically normal foetuses in utero. GPI analysis of these conceptuses revealed that most were chimaeric. However, donor ICM-type isozyme was only detected in the embryonic and extra-embryonic fractions of the chimaeras and never in the trophoblastic fraction. Thus, ICM cells appear unable to form trophoblast derivatives even when exposed to ‘outside’ conditions as experienced by developing trophoblast cells. This is evidence that ICM cells, although not overtly differentiated, are determined by 3½ days.


Sign in / Sign up

Export Citation Format

Share Document