Anti-Inflammatory Gallic Acid and Wedelolactone Are G Protein-Coupled Receptor-35 Agonists

Pharmacology ◽  
2012 ◽  
Vol 89 (3-4) ◽  
pp. 211-219 ◽  
Author(s):  
Huayun Deng ◽  
Ye Fang
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Ting Zhang ◽  
Malgorzata A. Garstka ◽  
Ke Li

After the discovery of the C5a receptor C5aR1, C5aR2 is the second receptor found to bind C5a and its des-arginine form. As a heptahelical G protein-coupled receptor but devoid of the intracellular Gα signal, C5aR2 is special and confusing. Ramifications and controversies about C5aR2 are under debate since its identification, from putative ligands and cellular localization to intracellular signals and pathological roles in inflammation and immunity. The ruleless and even conflicting pro- or anti-inflammatory role of C5aR2 in animal models of diverse diseases makes one bewildered. This review summarizes reports on C5aR2, tries to clear up available evidence on these four controversial aspects, and delineates C5aR2 function(s). It also summarizes available toolboxes for C5aR2 study.


Inflammation ◽  
2020 ◽  
Vol 43 (5) ◽  
pp. 1971-1987
Author(s):  
Tomoki Minamihata ◽  
Katsura Takano ◽  
Mitsuaki Moriyama ◽  
Yoichi Nakamura

2018 ◽  
Vol 834 ◽  
pp. 240-245 ◽  
Author(s):  
Satoshi Muneoka ◽  
Megumi Goto ◽  
Kumiko Kadoshima-Yamaoka ◽  
Reiko Kamei ◽  
Maki Terakawa ◽  
...  

2017 ◽  
Vol 42 (4) ◽  
pp. 1420-1430 ◽  
Author(s):  
Guangxin Chen ◽  
Shoupeng Fu ◽  
Wenqian Feng ◽  
Bingxu Huang ◽  
Shiyao Xu ◽  
...  

Background: Hydroxy-carboxylic acid receptor 2 (HCA2, also called GPR109A) belongs to the G protein-coupled receptor (GPCR) family and is found in humans, rats, mice, hamsters and guinea pigs, but there are almost no reports of this protein in other species. In this investigation, we speculated that AMP010014A09 (AMP+) is a homologue of GPR109A in swine. Methods: To test this hypothesis, the following experiments were designed: monocytes isolated from the peripheral blood of swine were treated with LPS after pretreating with or without β-hydroxybutyric acid (BHBA), and the levels of pro-inflammatory cytokines and inflammatory proteins were assessed. cAMP levels induced by Forskolin in swine testicular (ST) and IPEC-J2 cells were detected with or without BHBA treatment and following silencing or stable transfection of the AMP+ gene. Results: AMP+ in swine exhibited a high level of homology with HM74A in humans and PUMA-G in mice. BHBA inhibited the LPS-induced secretion of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1β and the inflammatory protein COX-2 in monocytes of swine. BHBA suppressed the Forskolin-induced cAMP level increase in ST cells, but failed to inhibit the accumulation of cAMP after the AMP+ gene was silenced with shRNA by transfecting cells with the pGPU6-GFP-Neo-AMP+-sus-392 plasmid. BHBA had no effect on cAMP levels in IPEC-J2 cells, but significantly inhibited the increase in cAMP induced by Forskolin treatment following transfection of the AMP+ gene into IPEC-J2 cells by a lentivirus vector. Conclusion: Our results indicated that AMP+ encodes a G protein-coupled receptor in Sus scrofa that inhibits cAMP levels and mediates anti-inflammatory effects in swine monocytes.


2018 ◽  
Vol 108 ◽  
pp. 153-164 ◽  
Author(s):  
Hossein Azizian ◽  
Mohammad Khaksari ◽  
Gholamreza Asadi karam ◽  
Mansour Esmailidehaj ◽  
Zeinab Farhadi

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251677
Author(s):  
Jun Wu ◽  
Nu Chen ◽  
Yongqing Liu ◽  
Grzegorz Godlewski ◽  
Henry J. Kaplan ◽  
...  

Cannabidiol (CBD) exhibits anti-inflammatory and neuroprotective properties and is suggested to be effective in the pre-clinical and clinical treatment of illnesses of the central nervous system (CNS). Two major types of CNS glial cells, astrocytes and microglia, play critical roles in the development and pathogenesis of CNS diseases. However, the mechanisms by which CBD plays an anti-inflammatory and neuroprotective role for these glial cells have not been fully elucidated. In this study, we examined the effects of CBD on the inflammatory response of mouse primary astrocytes and microglia. We also investigated whether the effect of CBD on cytokine release is mediated by the G protein coupled receptor 3 (GPR3), which was recently identified as a novel receptor for CBD. Our results showed that CBD inhibited inflammatory responses of astrocytes and microglia stimulated with lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) ligand in vitro and in vivo. In addition, CBD reduced the phosphorylation of STAT3 and NF-κB signaling pathways in LPS-stimulated astrocytes. However, the inhibitory effect of CBD on pro-inflammatory cytokine production was independent of GPR3 expression in both types of glial cells. Thus, although CBD is effective in ameliorating the activation of astrocytes and microglia, its mechanism of action still requires further study. Our data support the concept that CBD may have therapeutic potential for neurological disorders that involve neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document