scholarly journals Inhibition of Histamine H1 Receptor Activity Modulates Proinflammatory Cytokine Production of Dendritic Cells through c-Rel Activity

2013 ◽  
Vol 160 (3) ◽  
pp. 265-274 ◽  
Author(s):  
Chin-Lai Lee ◽  
Shih-Hsien Hsu ◽  
Yuh-Jyh Jong ◽  
Chih-Hsing Hung ◽  
Jau-Ling Suen
2020 ◽  
Vol 295 (10) ◽  
pp. 3099-3114
Author(s):  
Nina E. Murugina ◽  
Anna S. Budikhina ◽  
Yulia A. Dagil ◽  
Polina V. Maximchik ◽  
Lyudmila S. Balyasova ◽  
...  

Upon activation with pathogen-associated molecular patterns, metabolism of macrophages and dendritic cells is shifted from oxidative phosphorylation to aerobic glycolysis, which is considered important for proinflammatory cytokine production. Fragments of bacterial peptidoglycan (muramyl peptides) activate innate immune cells through nucleotide-binding oligomerization domain (NOD) 1 and/or NOD2 receptors. Here, we show that NOD1 and NOD2 agonists induce early glycolytic reprogramming of human monocyte-derived macrophages (MDM), which is similar to that induced by the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide. This glycolytic reprogramming depends on Akt kinases, independent of mTOR complex 1 and is efficiently inhibited by 2-deoxy-d-glucose (2-DG) or by glucose starvation. 2-DG inhibits proinflammatory cytokine production by MDM and monocyte-derived dendritic cells activated by NOD1 or TLR4 agonists, except for tumor necrosis factor production by MDM, which is inhibited initially, but augmented 4 h after addition of agonists and later. However, 2-DG exerts these effects by inducing unfolded protein response rather than by inhibiting glycolysis. By contrast, glucose starvation does not cause unfolded protein response and, in normoxic conditions, only marginally affects proinflammatory cytokine production triggered through NOD1 or TLR4. In hypoxia mimicked by treating MDM with oligomycin (a mitochondrial ATP synthase inhibitor), both 2-DG and glucose starvation strongly suppress tumor necrosis factor and interleukin-6 production and compromise cell viability. In summary, the requirement of glycolytic reprogramming for proinflammatory cytokine production in normoxia is not obvious, and effects of 2-DG on cytokine responses should be interpreted cautiously. In hypoxia, however, glycolysis becomes critical for cytokine production and cell survival.


2013 ◽  
Vol 81 (5) ◽  
pp. 1654-1662 ◽  
Author(s):  
Leonardo A. de Almeida ◽  
Gilson C. Macedo ◽  
Fábio A. V. Marinho ◽  
Marco T. R. Gomes ◽  
Patrícia P. Corsetti ◽  
...  

ABSTRACTBrucella abortusis recognized by several Toll-like receptor (TLR)-associated pathways triggering proinflammatory responses that affect both the nature and intensity of the immune response. Previously, we demonstrated thatB. abortus-mediated dendritic cell (DC) maturation and control of infection are dependent on the adaptor molecule MyD88. However, the involvement of all TLRs in response toB. abortusinfection is not completely understood. Therefore, we decided to evaluate the requirement for TLR6 in host resistance toB. abortus. Here, we demonstrated that TLR6 is an important component for triggering an innate immune response againstB. abortus. Anin vitroluciferase assay indicated that TLR6 cooperates with TLR2 to senseBrucellaand further activates NF-κB signaling. However,in vivoanalysis showed that TLR6, not TLR2, is required for the efficient control ofB. abortusinfection. Additionally,B. abortus-infected dendritic cells require TLR6 to induce tumor necrosis factor alpha (TNF-α) and interleukin-12 (IL-12). Furthermore, our findings demonstrated that the mitogen-activated protein kinase (MAPK) signaling pathway is impaired in TLR2, TLR6, and TLR2/6 knockout (KO) DCs when infected withB. abortus, which may account for the lower proinflammatory cytokine production observed in TLR6 KO mouse dendritic cells. In summary, the results presented here indicate that TLR6 is required to trigger innate immune responses againstB. abortusin vivoand is required for the full activation of DCs to induce robust proinflammatory cytokine production.


Sign in / Sign up

Export Citation Format

Share Document