signal cascades
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 129
Author(s):  
Na-Ra Han ◽  
Seong-Gyu Ko ◽  
Hi-Joon Park ◽  
Phil-Dong Moon

Oncostatin M (OSM) plays a role in various inflammatory reactions, and neutrophils are the main source of OSM in pulmonary diseases. However, there is no evidence showing the mechanism of OSM production in neutrophils. While dexamethasone (Dex) has been known to exert anti-inflammatory activity in various fields, the precise mechanisms of OSM downregulation by Dex in neutrophils remain to be determined. Here, we examined how OSM is produced in neutrophil-like differentiated HL-60 cells. Enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot analysis were utilized to assess the potential of Dex. Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation resulted in OSM elevation in neutrophil-like dHL-60 cells. OSM elevation induced by GM-CSF is regulated by phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor (NF)-kB signal cascades. GM-CSF stimulation upregulated phosphorylated levels of PI3K or Akt or NF-κB in neutrophil-like dHL-60 cells. Treatment with Dex decreased OSM levels as well as the phosphorylated levels of PI3K or Akt or NF-κB in neutrophil-like dHL-60 cells. Our findings show the potential of Dex in the treatment of inflammatory diseases via blocking of OSM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yingbo He ◽  
Natalie Taylor ◽  
Xiang Yao ◽  
Anindya Bhattacharya

AbstractMicroglia, CNS resident innate immune cells, respond strongly to activation of TLR3 and TLR4, which recognize viral dsRNA poly(I:C) and bacterial endotoxin LPS, respectively. However, few studies have thoroughly and parallelly compared functional phenotypes and downstream mechanisms between LPS- and poly(I:C)-exposed primary microglia. Here, we investigated the responses of mouse primary microglia upon LPS and poly(I:C) stimulation by detecting various phenotypes ranging from morphology, proliferation, secretion, chemotaxis, to phagocytosis. Furthermore, we explored their sequential gene expression and the downstream signal cascades. Interestingly, we found that the microglial activation pattern induced by LPS was distinguished from that induced by poly(I:C). Regarding microglial morphology, LPS caused an ameboid-like shape while poly(I:C) induced a bushy shape. Microglial proliferation was also facilitated by LPS but not by poly(I:C). In addition, LPS and poly(I:C) modulated microglial chemotaxis and phagocytosis differently. Furthermore, genome-wide analysis provided gene-level support to these functional differences, which may be associated with NF-κb and type I interferon pathways. Last, LPS- and poly(I:C)-activated microglia mediated neurotoxicity in a co-culture system. This study extends our understanding of TLR roles in microglia and provides insights into selecting proper inflammatory microglial models, which may facilitate identification of new targets for therapeutic application.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 145
Author(s):  
Kun Song ◽  
Shitao Li

The nuclear factor κB (NF-κB) family are the master transcription factors that control cell proliferation, apoptosis, the expression of interferons and proinflammatory factors, and viral infection. During viral infection, host innate immune system senses viral products, such as viral nucleic acids, to activate innate defense pathways, including the NF-κB signaling axis, thereby inhibiting viral infection. In these NF-κB signaling pathways, diverse types of ubiquitination have been shown to participate in different steps of the signal cascades. Recent advances find that viruses also modulate the ubiquitination in NF-κB signaling pathways to activate viral gene expression or inhibit host NF-κB activation and inflammation, thereby facilitating viral infection. Understanding the role of ubiquitination in NF-κB signaling during viral infection will advance our knowledge of regulatory mechanisms of NF-κB signaling and pave the avenue for potential antiviral therapeutics. Thus, here we systematically review the ubiquitination in NF-κB signaling, delineate how viruses modulate the NF-κB signaling via ubiquitination and discuss the potential future directions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Justyna Basak ◽  
Ireneusz Majsterek

Multiple sclerosis (MS) is characterized by multifocal lesions, chronic inflammatory condition, and degenerative processes within the central nervous system (CNS) leading to demyelination. The most important cells involved in its pathogenesis are those which are CD4+, particularly proinflammatory Th1/Th17 and regulatory Treg. Signal cascades associated with CD4+ differentiation are regulated by microRNAs (miRNAs): short, single-stranded RNAs, responsible for negative regulation of gene expression at the posttranscriptional level. Several miRNAs have been consistently reported as showing dysregulated expression in MS, and their expression patterns may be elevated or decreased, depending on the function of specific miRNA in the immune system. Studies in MS patients indicate that, among others, miR-141, miR-200a, miR-155, miR-223, and miR-326 are upregulated, while miR-15b, miR-20b, miR-26a, and miR-30a are downregulated. Dysregulation of these miRNAs may contribute to the imbalance between pro- and anti-inflammatory processes, since their targets are associated with the regulation of Th1/Th17 and Treg cell differentiation. Highly expressed miRNAs can in turn suppress translation of key Th1/Th17 differentiation inhibitors. miRNA dysregulation may result from the impact of various factors at each stage of their biogenesis. Immature miRNA undergoes multistage transcriptional and posttranscriptional modifications; therefore, any protein involved in the processing of miRNAs can potentially lead to disturbances in their expression. Epigenetic modifications that have a direct impact on miRNA gene transcription may also play an important role.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5850
Author(s):  
Vladimir Chobot ◽  
Franz Hadacek ◽  
Gert Bachmann ◽  
Wolfram Weckwerth ◽  
Lenka Kubicova

Flavonoids are rather common plant phenolic constituents that are known for potent antioxidant effects and can be beneficial for human health. Flavonoids with a pyrogallol moiety are highly efficient reducing agents with possible pro- and antioxidant effects, depending on the reaction milieu. Therefore, the redox properties of myricetin and tricetin were investigated by differential pulse voltammetry and deoxyribose degradation assay. Tricetin proved to be a good antioxidant but only showed negligible pro-oxidant activity in one of the deoxyribose degradation assay variants. Compared to tricetin, myricetin showed pro- and antioxidant effects. The more efficient reducing properties of myricetin are probably caused by the positive mesomeric effect of the enolic 3-hydroxy group on ring C. It is evident that the antioxidant properties of structurally similar flavonoids can be converted to apparent pro-oxidant effects by relatively small structural changes, such as hydroxylation. Since reactive oxygen species (ROS) often serve as secondary messengers in pathological and physiological processes in animal and plant cells, the pro- and antioxidant properties of flavonoids are an important part of controlling mechanisms of tissue signal cascades.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Sheng-Mou Hou ◽  
Po-Chun Chen ◽  
Chieh-Mo Lin ◽  
Mei-Ling Fang ◽  
Miao-Ching Chi ◽  
...  

Abstract Background Osteoarthritis (OA) and rheumatoid arthritis (RA) are common joint disorders that are considered to be different diseases due to their unique molecular mechanisms and pathogenesis. Chemokines and their corresponding receptors have been well characterized in RA progression, but less so in OA pathogenesis. Methods The human primary synovial fibroblasts (SFs) were obtained from human OA and RA tissue samples. The Western blot and qPCR were performed to analyze the expression levels of CXCL1, as well as CXCL-promoted IL-6 expression in both OASFs and RASFs. The signal cascades that mediate the CXCL1-promoted IL-6 expression were identified by using chemical inhibitors, siRNAs, and shRNAs. Results Here, we found that both diseases feature elevated levels of CXCL1 and interleukin (IL)-6, an important proinflammatory cytokine that participates in OA and RA pathogenesis. In OASFs and RASFs, CXCL1 promoted IL-6 expression in a dose- and time-dependent manner. In OASFs and RASFs overexpressing CXCL1 or transduced with shRNA plasmid, IL-6 expression was markedly upregulated. CXCR2, c-Raf, and MAPKs were found to regulate CXCL1-induced IL-6 expression in OASFs and RASFs. Finally, CXCL1 triggered the transcriptional activities of c-Jun (which regulates the expression of proinflammatory proteins) in OASFs and RASFs. Conclusions Our present work suggests that the CXCL1/CXCR2 axis helps to orchestrate inflammatory responses in OA and RA SFs.


2020 ◽  
Author(s):  
Sheng-Mou Hou ◽  
PoChun Chen ◽  
Chieh-Mo Lin ◽  
Mei-Ling Fang ◽  
Miao-Ching Chi ◽  
...  

Abstract Background: Osteoarthritis (OA) and rheumatoid arthritis (RA) are common joint disorders that are considered to be different diseases due to their unique molecular mechanisms and pathogenesis. Chemokines and their corresponding receptors have been well-characterized in RA progression, but less so in OA pathogenesis.Methods: The human primary synovial fibroblasts (SFs) were obtained from human OA and RA tissue samples. The Western blot and qPCR were performed to analyze expression levels of CXCL1, as well as CXCL-promoted IL-6 expression in both OASFs and RASFs. The signal cascades that mediate the CXCL1-promoted IL-6 expression were identified by using chemical inhibitors, siRNAs and shRNAs.Results: Here, we found that both diseases feature elevated levels of CXCL1 and interleukin (IL)-6, an important proinflammatory cytokine that participates in OA and RA pathogenesis. In OASFs and RASFs, CXCL1 promoted IL-6 expression in a dose- and time-dependent manner. In OASFs and RASFs overexpressing CXCL1 or transduced with shRNA plasmid, IL-6 expression was markedly upregulated. CXCR2, c-Raf and MAPKs was found to regulate CXCL1-induced IL-6 expression in OASFs and RASFs. Finally, CXCL1 triggered the transcriptional activities of c-Jun (which regulates the expression of proinflammatory proteins) in OASFs and RASFs.Conclusions: Our present work suggests that the CXCL1/CXCR2 axis helps to orchestrate inflammatory responses in OA and RA SFs.


2020 ◽  
Author(s):  
Sheng-Mou Hou ◽  
PoChun Chen ◽  
Chieh-Mo Lin ◽  
Mei-Ling Fang ◽  
Miao-Ching Chi ◽  
...  

Abstract Background: Osteoarthritis (OA) and rheumatoid arthritis (RA) are common joint disorders that are considered to be different diseases due to their unique molecular mechanisms and pathogenesis. Chemokines and their corresponding receptors have been well-characterized in RA progression, but less so in OA pathogenesis. Methods: The human primary synovial fibroblasts (SFs) were obtained from human OA and RA tissue samples. The Western blot and qPCR were performed to analyze expression levels of CXCL1, as well as CXCL-promoted IL-6 expression in both OASFs and RASFs. The signal cascades that mediate the CXCL1-promoted IL-6 expression were identified by using chemical inhibitors, siRNAs and shRNAs. Results: Here, we found that both diseases feature elevated levels of CXCL1 and interleukin (IL)-6, an important proinflammatory cytokine that participates in OA and RA pathogenesis. In OASFs and RASFs, CXCL1 promoted IL-6 expression in a dose- and time-dependent manner. In OASFs and RASFs overexpressing CXCL1 or transduced with shRNA plasmid, IL-6 expression was markedly upregulated. CXCR2, c-Raf and MAPKs was found to regulate CXCL1-induced IL-6 expression in OASFs and RASFs. Finally, CXCL1 triggered the transcriptional activities of c-Jun (which regulates the expression of proinflammatory proteins) in OASFs and RASFs. Conclusions: Our present work suggests that the CXCL1/CXCR2 axis helps to orchestrate inflammatory responses in OA and RA SFs.


Author(s):  
Michael Oettel ◽  
Hans Joachim Zentel ◽  
Klaus Nickisch

AbstractThe different etiopathogenetic mechanisms and the diversity of clinical features of endometriosis has not yet allowed to identify a causal pharmacological monotherapy satisfying the unresolved medical needs in this important female disease. Therefore, despite the search for new therapeutic principles for the indication, the strategy of gradual optimization of established therapeutic principles should not be disregarded.In the case of progestins, the fact that each compound has its own, specific profile may allow to study the therapeutic relevance of the various signal cascades influenced by their receptors.Using the example of the progestin dienogest, the different genomic and non-genomic mechanisms of action are discussed. It is pharmacodynamic profile is unique compared to other progestins.In light of the emerging multitude of pathomechanisms in endometriosis, a monotherapy may not be possible, and then the search for broad spectrum compounds or combination therapies with dual or multiple mode of action in a clinically relevant dose range might be considered. The progestogenic action may greatly benefit from, by way of example, additional anti-inflammatory and/or anti-fibrotic and/or pro-apoptotic activities. Such a strategy could lead to new drug classes.


2020 ◽  
Vol 44 (3) ◽  
pp. 386-398 ◽  
Author(s):  
Ricardo Flores ◽  
Beatriz Navarro ◽  
Sonia Delgado ◽  
Pedro Serra ◽  
Francesco Di Serio

ABSTRACT The initial molecular lesions through which viroids, satellite RNAs and viruses trigger signal cascades resulting in plant diseases are hotly debated. Since viroids are circular non-protein-coding RNAs of ∼250–430 nucleotides, they appear very convenient to address this issue. Viroids are targeted by their host RNA silencing defense, generating viroid-derived small RNAs (vd-sRNAs) that are presumed to direct Argonaute (AGO) proteins to inactivate messenger RNAs, thus initiating disease. Here, we review the existing evidence. Viroid-induced symptoms reveal a distinction. Those attributed to vd-sRNAs from potato spindle tuber viroid and members of the family Pospiviroidae (replicating in the nucleus) are late, non-specific and systemic. In contrast, those attributed to vd-sRNAs from peach latent mosaic viroid (PLMVd) and other members of the family Avsunviroidae (replicating in plastids) are early, specific and local. Remarkably, leaf sectors expressing different PLMVd-induced chloroses accumulate viroid variants with specific pathogenic determinants. Some vd-sRNAs containing such determinant guide AGO1-mediated cleavage of mRNAs that code for proteins regulating chloroplast biogenesis/development. Therefore, the initial lesions and the expected phenotypes are connected by short signal cascades, hence supporting a cause-effect relationship. Intriguingly, one virus satellite RNA initiates disease through a similar mechanism, whereas in the Pospiviroidae and in plant viruses the situation remains uncertain.


Sign in / Sign up

Export Citation Format

Share Document