Shaping Intestinal Bacterial Community by TLR and NLR Signaling

Author(s):  
Koichi S. Kobayashi
Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 701 ◽  
Author(s):  
Fengling Zhang ◽  
Xingjia Xiang ◽  
Yuanqiu Dong ◽  
Shaofei Yan ◽  
Yunwei Song ◽  
...  

Intestinal bacterial communities form an integral component of the organism. Many factors influence gut bacterial community composition and diversity, including diet, environment and seasonality. During seasonal migration, birds use many habitats and food resources, which may influence their intestinal bacterial community structure. Hooded crane (Grus monacha) is a migrant waterbird that traverses long distances and occupies varied habitats. In this study, we investigated the diversity and differences in intestinal bacterial communities of hooded cranes over the migratory seasons. Fecal samples from hooded cranes were collected at a stopover site in two seasons (spring and fall) in Lindian, China, and at a wintering ground in Shengjin Lake, China. We analyzed bacterial communities from the fecal samples using high throughput sequencing (Illumina Mi-seq). Firmicutes, Proteobacteria, Tenericutes, Cyanobacteria, and Actinobacteria were the dominant phyla across all samples. The intestinal bacterial alpha-diversity of hooded cranes in winter was significantly higher than in fall and spring. The bacterial community composition significantly differed across the three seasons (ANOSIM, P = 0.001), suggesting that seasonal fluctuations may regulate the gut bacterial community composition of migratory birds. This study provides baseline information on the seasonal dynamics of intestinal bacterial community structure in migratory hooded cranes.


2019 ◽  
Vol 110 (3) ◽  
pp. 309-320
Author(s):  
Chen Lin ◽  
Zhou Wei ◽  
Zhou Yi ◽  
Tan Tingting ◽  
Du Huamao ◽  
...  

AbstractNanosilver is an environment-friendly, harmless alternative of traditional disinfectants which can be potentially applied in the sericulture industry. However, the effects of nanosilver on the intestinal bacterial community of the silkworms (Bombyx mori L.) are unclear. In this study, Illumina MiSeq high-throughput sequencing technology was used to assess the intestinal bacterial community in both male and female silkworms while treated with different concentrations of nanosilver. We found that nanosilver significantly influenced the composition of silkworm intestinal bacterial community on the different taxonomic levels. Most conspicuously, the abundance of Firmicutes was increased by the treatment of 20 mg L−1 nanosilver but decreased by that of 100 mg L−1 nanosilver at the phylum level. The same trend was observed in Bacilli at the class level and in Enterococcus at the genus level. In some extreme cases, application of nanosilver eliminated the bacterium, e.g., Brevibacillus, but increased the population of several other bacteria in the host intestine, such as Blautia, Terrisporobacter, Faecalibacterium, and some bacteria could only be found in nanosilver treatment groups, e.g., Dialister. In addition, although nanosilver generally showed negative effects on the cocooning rate in a dose-dependent manner, we found that 20 mg L−1 nanosilver treatment significantly increased the body weight of silkworms and did not show negative effects on the survival rate. These results indicated that the intestinal bacteria community of silkworm larvae was significantly changed after nanosilver treatment which might consequently influence host growth and development.


2020 ◽  
Vol 32 (3) ◽  
pp. 2061-2070 ◽  
Author(s):  
Regina Elizondo-González ◽  
Eduardo Quiroz-Guzmán ◽  
Adina Howe ◽  
Fan Yang ◽  
Jared Flater ◽  
...  

2007 ◽  
Vol 1 (2) ◽  
pp. 180-183 ◽  
Author(s):  
Pawel Janczyk ◽  
Robert Pieper ◽  
Wolfgang Bernhard Souffrant ◽  
Diane Bimczok ◽  
Hermann-Josef Rothkötter ◽  
...  

2011 ◽  
Vol 62 (5) ◽  
pp. 1390-1399 ◽  
Author(s):  
Hyunbum Jeon ◽  
Soyoung Park ◽  
Jiyoung Choi ◽  
Gilsang Jeong ◽  
Sang-Beom Lee ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3475
Author(s):  
Xinfu Li ◽  
Shen Zhou ◽  
Jing Zhang ◽  
Zhihao Zhou ◽  
Qiang Xiong

Black soldier fly (BSF) larvae, Hermetia illucens (Diptera: Stratiomyidae) have emerged as an efficient system for the bioconversion of organic waste. Intestinal microorganisms are involved in several insect functions, including the development, nutrition, and physiology of the host. In order to transform the intestinal bacterial community of BSF directionally, six different potential functional strains (Lysinibacillus sphaericus, Proteus mirabilis, Citrobacter freundii, Pseudocitrobacter faecalis, Pseudocitrobacter anthropi, and Enterococcus faecalis) were added to aseptic food waste, and aseptic food waste was used without inoculants as a blank control to evaluate the changes in the intestinal microbiota of BSF under artificial intervention conditions. These six strains (which were isolated from the larval intestinal tract in selective media and then identified and screened) may be considered responsible for the functional characteristics of larvae. The results imply that the increase in the abundance of Lysinibacillus in the experimental group that was exposed to Lysinibacillus sphaericus was significantly different to the other groups (p < 0.05). The results revealed that it is feasible to transform the intestinal microbiota of BSF directionally; there are differences in the proliferation of different strains in the intestine of BSF.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2352
Author(s):  
Xia Wan ◽  
Yu Jiang ◽  
Yuyan Cao ◽  
Binghua Sun ◽  
Xingjia Xiang

Odontolabis fallaciosa (Coleoptera: Lucanidae) is a giant and popular stag beetle with striking sexual dimorphism and male trimorphism. However, little is known about their intestinal microbiota, which might play an indispensable role in shaping the health of their hosts. The aim of this study was to investigate the intestinal bacterial community structure between the two sexes and among three male morphs of O. fallaciosa from China using high-throughput sequencing (Illumina MiSeq). The gut bacterial community structure was significantly different between males and females, suggesting that sex appeared to be the crucial factor shaping the intestinal bacterial community. Females had higher bacterial alpha-diversity than males. There was little difference in gut bacterial community structure among the three male morphs. However, compared to medium and small males, large individuals were associated with the higher relative abundance of Firmicutes and Firmicutes/Bacteroides (F/B) ratio, which might contribute to nutritional efficiency. Overall, these results might help to further our understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among the three male morphs.


Sign in / Sign up

Export Citation Format

Share Document