scholarly journals Sexual Dimorphism of the Electrosensory System: A Quantitative Analysis of Nerve Axons in the Dorsal Anterior Lateral Line Nerve of the Blue-Spotted Fantail Stingray (Taeniura lymma)

2013 ◽  
Vol 81 (4) ◽  
pp. 226-235 ◽  
Author(s):  
R.M. Kempster ◽  
E. Garza-Gisholt ◽  
C.A. Egeberg ◽  
N.S. Hart ◽  
O.R. O'Shea ◽  
...  
1933 ◽  
Vol 16 (4) ◽  
pp. 715-732 ◽  
Author(s):  
Hudson Hoagland

1. The lateral-line nerves of trout as well as those of catfish are found to discharge impulses spontaneously at a high frequency. 2. The frequency of nerve impulse discharge is measured as a function of the number of participating receptor groups (lateral-line sense organs). A quantitative analysis is made of the contribution to the total response made by each group of sense organs. 3. An analysis of the variability of the response is presented which makes it possible to estimate quantitatively the longitudinal extent of damage to the neuromasts due to surgical manipulation. 4. A method is described for recording the response of a single nerve fiber in the lateral-line trunk. 5. The frequency of the spontaneous discharge from the lateral-line nerve trunk when plotted as a function of temperature according to the Arrhenius equation yields a temperature characteristic of approximately 5000 calories. 6. The variability of the frequency of response as a function of temperature indicates the existence of temperature thresholds for the spontaneous activity of the neuromasts. 7. A possible basis for the spontaneous activity is considered. It is pointed out that the lateral-line system may serve as a model of the Purkinje cells of the cerebellum.


Zoomorphology ◽  
2020 ◽  
Author(s):  
Harald Ahnelt ◽  
David Ramler ◽  
Maria Ø. Madsen ◽  
Lasse F. Jensen ◽  
Sonja Windhager

AbstractThe mechanosensory lateral line of fishes is a flow sensing system and supports a number of behaviors, e.g. prey detection, schooling or position holding in water currents. Differences in the neuromast pattern of this sensory system reflect adaptation to divergent ecological constraints. The threespine stickleback, Gasterosteus aculeatus, is known for its ecological plasticity resulting in three major ecotypes, a marine type, a migrating anadromous type and a resident freshwater type. We provide the first comparative study of the pattern of the head lateral line system of North Sea populations representing these three ecotypes including a brackish spawning population. We found no distinct difference in the pattern of the head lateral line system between the three ecotypes but significant differences in neuromast numbers. The anadromous and the brackish populations had distinctly less neuromasts than their freshwater and marine conspecifics. This difference in neuromast number between marine and anadromous threespine stickleback points to differences in swimming behavior. We also found sexual dimorphism in neuromast number with males having more neuromasts than females in the anadromous, brackish and the freshwater populations. But no such dimorphism occurred in the marine population. Our results suggest that the head lateral line of the three ecotypes is under divergent hydrodynamic constraints. Additionally, sexual dimorphism points to divergent niche partitioning of males and females in the anadromous and freshwater but not in the marine populations. Our findings imply careful sampling as an important prerequisite to discern especially between anadromous and marine threespine sticklebacks.


1973 ◽  
Vol 151 (1) ◽  
pp. 67-84 ◽  
Author(s):  
L. Maler ◽  
H. J. Karten ◽  
M. V. L. Bennett

1925 ◽  
Vol 7 (6) ◽  
pp. 671-677 ◽  
Author(s):  
G. H. Parker

1. The nerve cord of the lobster (Homarus americanus Milne-Edwards) is very delicate and can be used as a living preparation for only a few hours after its removal from the animal. 2. During the first hour or so after removal it discharges CO2 at a steadily decreasing rate beginning at about 0.20 mg. CO2 per gram of cord per minute and ending at about 0.07 mg. 3. This discharge exhibits a steady decrease in rate and is not divisible into a period of gush and a period of uniform outflow as with the lateral-line nerve of the dogfish. It terminates in a very few hours with the complete death of the cord. 4. Both handling and cutting the cord temporarily increase the rate of CO2 output. 5. The stimulated cord discharges CO2 at a rate about 26 per cent higher than that of the quiescent cord, an increase of about 1.6 times that of the increase observed in the lateral-line nerve of the dogfish under similar circumstances.


1991 ◽  
Vol 161 (1) ◽  
pp. 97-117 ◽  
Author(s):  
MARK RONAN ◽  
DAVID BODZNICK

Larval lampreys respond to skin illumination with a delayed burst of swimming in an attempt to escape the light. The photoresponse, which is independent of the lateral eyes and pineal organs, is most readily elicited by light shone on the tail. Behavioral studies in larval lampreys demonstrate that photosensory afferents innervating the tail are carried by a trunk lateral line nerve supplying regions caudal to the head. The present results confirm that bilateral transection of this nerve in larval sea lampreys markedly diminishes the photoresponse. The trunk lateral line nerve consists of the recurrent ramus of the anterior lateral line nerve and a ramus of the posterior lateral line nerve. Bilateral transection of the recurrent ramus does not affect the photoresponse, indicating that lateralis photosensory afferents enter the brain via the posterior lateral line nerve and terminate in the medial octavolateralis nucleus. Photosensory units were subsequently recorded in the trunk lateral line nerve, posterior lateral line nerve and the lateral line area of the medulla. Medullary photosensory units were localized to the medial nucleus, previously regarded as the primary mechanosensory nucleus. Photosensory units in lateral line nerves and the brain exhibited low, irregular spontaneous activity and, after latencies of 17–4 s, responded to tail illumination with repeated impulse bursts. Response thresholds were 0.1-0.9 mWcm−2. Responses to sustained illumination were slowly adapting. A skin photosense is thus an additional lateralis modality in lampreys.


Autophagy ◽  
2019 ◽  
Vol 16 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Yu Dong ◽  
Yuanjia Hu ◽  
Sovan Sarkar ◽  
Wei-Xing Zong ◽  
Min Li ◽  
...  

2017 ◽  
Vol 17 (10) ◽  
pp. S180-S181
Author(s):  
Bruce V. Darden ◽  
Susan Odum ◽  
Nick A. Russell ◽  
Shuichi Kaneyama ◽  
Lisa A. Ferrara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document