co2 output
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 13)

H-INDEX

35
(FIVE YEARS 1)

Geothermics ◽  
2022 ◽  
Vol 99 ◽  
pp. 102298
Author(s):  
Maria Luisa Carapezza ◽  
Massimo Chiappini ◽  
Iacopo Nicolosi ◽  
Luca Pizzino ◽  
Massimo Ranaldi ◽  
...  

2021 ◽  
Vol 8 ◽  
pp. 84-90
Author(s):  
Gerda Hartl

Today’s distribution of residences and workplaces is a result of availability of cheap oil combined with human preferences for residence in low-density areas. Having reached Peak-Oil nowadays, common motorised mobility is under scrutiny: Not only its massive CO2 output but, most of all, its future scarcity demands urban and regional planning to anticipate the sustainable city of the future. In our work, we have looked at the city of Vienna, in which we have researched patterns of mobility regarding commuters. Our final goal is redensification as a means for transformation of the present state into a walkable city. To make that possible, our analysis provides insights into necessities of mode switching, according to the distances from workplaces. The model which we present is applicable not only to our research area, but to a variety of cities that want to achieve a sustainable settlement structure.


2021 ◽  
Author(s):  
Elizabeth B Brown ◽  
Jaco Klok ◽  
Alex C Keene

Drosophila melanogaster is a leading genetic model for studying the neural regulation of sleep. Sleep is associated with changes in behavior and physiological state that are largely conserved across species. The investigation of sleep in flies has predominantly focused on behavioral readouts of sleep because physiological measurements, including changes in brain activity and metabolic rate are less accessible. We have previously used stop-flow indirect calorimetry to measure whole body metabolic rate in single flies and have shown that in flies, like mammals, metabolic rate is reduced during sleep. Here, we describe a modified version of this system that allows for efficient and highly sensitive acquisition of CO2 output from single flies. We also describe a modification that allows for simultaneous acquisition of CO2 and O2 levels, providing a respiratory quotient that quantifies how metabolic stores are utilized. Finally, we show that sleep-dependent changes in metabolic rate are diminished in aging flies, supporting the notion that sleep quality is reduced as flies age. Taken together, the use of indirect calorimetry provides a physiological measure of sleep with broad applications to genetic studies in flies.


2021 ◽  
Vol 11 (20) ◽  
pp. 9574
Author(s):  
Mahmoud Mostafa ◽  
Christopher Varela ◽  
Meik B. Franke ◽  
Edwin Zondervan

The goal of this study is to develop a dynamic model for a Carbon Capture (CC) process that can be integrated with a water electrolysis facility. The possibility of operating the post-combustion CC plant dynamically is investigated. The final model successfully tracks the parallel hydrogen production, providing the stoichiometric required CO2 stream for the subsequent methanol reactor. A dynamic model is used to configure controllers and to test the unit performance and stream conditions for various set points. Through the transient operation, the required feed gas is provided while optimizing the solvent and energy requirements. It is found that the slowest acting stage is the reboiler with a time constant of 3.8 h. Other process variables stabilize much quicker, requiring only a few minutes to reach steady-state conditions. The hydrogen-tracking scenario shows that the carbon capture plant can successfully operate under varying conditions with a maximum CO2 output increase of 7% of the minimum flowrate in the representative 24 h simulation time. The output CO2 stream is maintained at the desired >98% purity, 25 °C temperature, and 1.85 bar pressure, which allows to successfully perform hydrogen tracking operations.


Transport ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 246-259
Author(s):  
Mariusz Brzeziński ◽  
Dariusz Pyza

Currently, many logistics operators operate in both domestic and foreign markets using various forms of transport organization. Choosing a corresponding technology and appropriate form of transport has an influence not only delivery time and costs, but also has an impact on the environment as a whole. There is a plethora of public research available in global literature discussing various ways of exploiting transport. On the other hand, there is a lack of complex studies detailing carbon emissions coming from transport activity. Specifically, where a theory of organic fuel combustion in the form of a chemical reaction with oxygen is considered. To fill this gap, we offer an innovative Emission Model of Industrial Sources (EMIS) method. This method makes it possible to determine the amount of CO2 emitted into the atmosphere during various transport methods. It also enables us to estimate, in terms of CO2 output, a threshold where transport of containers via combined mode becomes more favourable for the environment, than road transport. We ran a simulation of our algorithm to create boundary conditions. This let us prepare a regression function of CO2 emission, for intermodal and road transport as a function of various transport distances. The simulation results suggest that our approach may be used by supervisory institutions, which are responsible further developing and utilizing combined transport.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1999
Author(s):  
Guanyong Sun ◽  
Bin Li ◽  
Hanjie Guo ◽  
Wensheng Yang ◽  
Shaoying Li ◽  
...  

Carbon included in coke and coal was used as a reduction agent and fuel in blast furnace (BF) ironmaking processes, which released large quantities of carbon dioxide (CO2). Minimizing the carbon consumption and CO2 output has always the goal of ironmaking research. In this paper, the reduction reactions of iron oxides by carbon, the gasification reaction of carbon by CO2, and the coupling reactions were studied by thermodynamic functions, which were derived from isobaric specific heat capacity. The reaction enthalpy at 298 K could not represent the heat value at the other reaction temperature, so the certain temperature should be confirmed by Gibbs frees energy and gas partial pressure. Based on Hess’ law, the energy consumption of the ironmaking process by carbon was calculated in detail. The decrease in the reduction temperature of solid metal iron has been beneficial in reducing the sensible heat required. When the volume ratio of CO to CO2 in the top gas of the furnace was given as 1.1–1.5, the coupling parameters of carbon gasification were 1.06–1.28 for Fe2O3, 0.71–0.85 for Fe3O4, 0.35–0.43 for FeO, respectively. With the increase in the coupling parameters, the volume fraction of CO2 decreased, and energy consumption and CO2 output increased. The minimum energy consumption and CO2 output of liquid iron production were in the reduction reactions with only CO2 generated, which were 9.952 GJ/t and 1265.854 kg/t from Fe2O3, 9.761 GJ/t and 1226.799 kg/t from Fe3O4, 9.007 GJ/t and 1107.368 kg/t from FeO, respectively. Compared with the current energy consumption of 11.65 GJ/t hot metal (HM) and CO2 output of 1650 kg/tHM of BF, the energy consumption and CO2 of ironmaking by carbon could reach lower levels by decreasing the coupled gasification reactions, lowering the temperature needed to generate solid Fe and adjusting the iron oxides to improve the iron content in the raw material. This article provides a simplified calculation method to understand the limit of energy consumption and CO2 output of ironmaking by carbon reduction iron oxides.


Sports ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 29
Author(s):  
Igor Mindukshev ◽  
Julia Sudnitsyna ◽  
Nikolay V. Goncharov ◽  
Elisaveta Skverchinskaya ◽  
Irina Dobrylko ◽  
...  

Preconditioning is often used in medicine to protect organs from ischemic damage and in athletes to enhance the performances. We tested whether low-dose ammonium preconditioning (AMP) could have a beneficial effect on physical exercises (PE). We used Cardiopulmonary Exercise Testing (CPET) on a treadmill to investigate the effects of low-dose AMP on the physical exercise capacity of professional track and field athletes and tested twenty-five athletes. Because of the individual differences between athletes, we performed a preliminary treadmill test (Pre-test) and, according to the results, the athletes were randomly allocated into the AMP and control (placebo, PL) group based on the similarity of the total distance covered on a treadmill. In the AMP group, the covered distance increased (11.3 ± 3.6%, p < 0.02) compared to Pre-test. Similarly, AMP significantly increased O2 uptake volume—VO2 (4.6 ± 2.3%, p < 0.03) and pulmonary CO2 output—VCO2 (8.7 ± 2.8%, p < 0.01). Further, the basic blood parameters (pH, pO2, and lactate) shift was lower despite the greater physical exercise progress in the AMP group compared to Pre-test, whereas in the placebo group there were no differences between Pre-test and Load-test. Importantly, the AMP significantly increased red blood cell count (6.8 ± 2.0%, p < 0.01) and hemoglobin concentration (5.3 ± 1.9%, p < 0.01), which might explain the beneficial effects in physical exercise progress. For the first time, we showed that low-dose AMP had clear beneficial effects on submaximal PE.


2020 ◽  
Vol 139 (3) ◽  
pp. 325-340
Author(s):  
Alessandro Aiuppa ◽  
Ausonio Ronchi ◽  
Marcello Bitetto ◽  
Andrea L. Rizzo ◽  
Fatima Viveiros ◽  
...  
Keyword(s):  

2020 ◽  
Vol 139 (3) ◽  
pp. 1-13
Author(s):  
Kyriaki Daskalopoulou ◽  
Sergio Calabrese ◽  
Antonina Lisa Gagliano ◽  
Konstantinos Kyriakopoulos ◽  
Lorenza Li Vigni ◽  
...  

Geology ◽  
2020 ◽  
Author(s):  
James M.D. Day ◽  
David R. Hilton

Consistent 3He/4He ratios have been measured for &gt;25 years in geothermal fluids and gases from Cumbre Vieja, La Palma (9.4 ± 0.1RA, where RA is the 3He/4He of air), and Teide, Tenerife (6.8 ± 0.3RA), Canary Islands. Both locations are characterized by similar CO2/3He (~2 to 4 × 109), mantle-like δ13C (–3.3‰ to –4.4‰) and CO2 output (0.1–0.2 × 1010 mol yr–1). Helium isotopic differences between the islands cannot be explained by differential aging and 4He ingrowth in their mantle sources. Instead, distinct He reservoirs exist, with a high-μ (HIMU)–type mantle source for La Palma and a more enriched mantle, with possible lithospheric mantle influence, for Tenerife. Geothermal samples from the Canary Islands record a present-day He distribution distinct from higher 3He/4He in olivine from older eastern Canary Island lavas, indicating temporal variability in sources. Comparison of geothermal sample data versus olivine, pyroxene, and glass He isotope data for the Canary Islands, Azores, Cape Verde, Hawaiian islands, and Iceland reveals generally good correspondence, even across &gt;1 m.y. of stratigraphy. However, in addition to the Canary Islands, there are examples of inter-island heterogeneity for He isotopes at Hawaii, the Azores, and within Iceland, preserved in hydrothermal samples, minerals, and glasses. In particular, in northwest Iceland, olivine separates from older lavas preserve higher 3He/4He than present-day geothermal samples from the same region. This difference likely reflects a reduced mantle-derived 3He input to Icelandic magmatism since the Miocene. Temporal variability in 3He/4He, assessed using geothermal and geological materials in conjunction, offers a powerful tool for examining heterogeneity and temporal evolution of mantle sources at intraplate volcanoes.


Sign in / Sign up

Export Citation Format

Share Document