Permeability of Synovial Membrane to Antirheumatic and Antiarthrotic Drugs and Its Implication in Pharmacotherapy of Rheumatic Joint Diseases

2015 ◽  
pp. 154-166
Author(s):  
D. A. Kalbhen
2021 ◽  
Vol 6 (4) ◽  
pp. 23-35
Author(s):  
Elena Panina

Intra-articular and periarticular use of drugs for the purpose of relieving inflammation of the synovial membrane or periarthritis is an integral part of the complex pathogenetic treatment of joint diseases. Effectiveness of local therapy with glucocorticosteroids (GCS )there is no doubt and depends on a number of factors, which should include the correct assessment of indications and contraindications, the correct choice of the drug, its dosage and technique of manipulation. The use of this method can significantly reduce the time of industrial and/or household disability in this extensive category of patients.However, the doctor's ignorance or disregard of the mandatory conditions and requirements for performing this minor surgical manipulation can lead to undesirable, including severe, discrediting consequences of the valuable method. Postgraduate training of doctors helps to solve the problem of non-professional approach to the appointment and conduct of intra-articular and periarticular manipulations using GCS.


Author(s):  
Thomas Pap ◽  
Adelheid Korb ◽  
Marianne Heitzmann ◽  
Jessica Bertrand

Synovial joints are composed of different morphological structures that have their distinct cellular and biochemical properties. Articular cartilage and synovial membrane are key components of synovial joints and show a number of peculiarities that makes them different from other tissues in our body. An in-depth knowledge of these structural and biochemical peculiarities is not only important for understanding key features of articular function but also provides explanations for important characteristics of both degenerative and inflammatory joint diseases. This chapter reviews the structure and biochemical composition of cartilage and synovium and points to important links between physiology and pathological conditions, particularly arthritis.


2011 ◽  
Vol 39 (1) ◽  
pp. 331-335 ◽  
Author(s):  
Janusz Popko ◽  
Sławomir Olszewski ◽  
Tomasz Guszczyn ◽  
Krzysztof Zwierz ◽  
Sławomir Pancewicz

A number of different types of glycoconjugate are found associated with joint tissue and fluids, comprising glycoproteins, glycolipids and glycosaminoglycans. Oligosaccharide chains of glycoconjugates are degraded by exoglycosidases, and the dominant exoglycosidase found in human blood, synovial fluid, the synovial membrane and chondrocytes of articular cartilage is HEX (N-acetyl-β-hexosaminidase). HEX is localized mostly intracellularly in synovial cells. Serum activity of HEX may be used to monitor the course and efficiency of treatment of Lyme arthritis, and activity of HEX, above 10 μkat/kg of protein in the synovial fluid, suggests rheumatoid disease. There is a shortage of HEX inhibitors able to penetrate synoviocytes, so the development of drugs which inhibit synthesis and/or the activity of HEX will be a promising field for future investigations.


2021 ◽  
Vol 7 ◽  
Author(s):  
Cécile Lambert ◽  
Jérémie Zappia ◽  
Christelle Sanchez ◽  
Antoine Florin ◽  
Jean-Emile Dubuc ◽  
...  

During the osteoarthritis (OA) process, activation of immune systems, whether innate or adaptive, is strongly associated with low-grade systemic inflammation. This process is initiated and driven in the synovial membrane, especially by synovium cells, themselves previously activated by damage-associated molecular patterns (DAMPs) released during cartilage degradation. These fragments exert their biological activities through pattern recognition receptors (PRRs) that, as a consequence, induce the activation of signaling pathways and beyond the release of inflammatory mediators, the latter contributing to the vicious cycle between cartilage and synovial membrane. The primary endpoint of this review is to provide the reader with an overview of these many molecules categorized as DAMPs and the contribution of the latter to the pathophysiology of OA. We will also discuss the different strategies to control their effects. We are convinced that a better understanding of DAMPs, their receptors, and associated pathological mechanisms represents a decisive issue for degenerative joint diseases such as OA.


1987 ◽  
Vol 16 (1) ◽  
pp. 121-129
Author(s):  
M. Möttönen ◽  
M. Pantio ◽  
T. Nevalainen

2002 ◽  
Vol 41 (03) ◽  
pp. 129-134 ◽  
Author(s):  
A. Wolski ◽  
E. Palombo-Kinne ◽  
F. Wolf ◽  
F. Emmrich ◽  
W. Becker ◽  
...  

Summary Aim: The cellular joint infiltrate in rheumatoid arthritis patients is rich in CD4-positive T-helper lymphocytes and macrophages, rendering anti-CD4 monoclonal antibodies (mAbs) suitable for specific immunoscintigraphy of human/ experimental arthritis. Following intravenous injection, however, mAbs are present both in the free form and bound to CD4-positive, circulating monocytes and T-cells. Thus, the present study aimed at analyzing the relative contribution of the free and the cell-bound component to the imaging of inflamed joints in experimental adjuvant arthritis (AA). Methods: AA rat peritoneal macrophages or lymph node T-cells were incubated in vitro with saturating amounts of 99mTc-anti-CD4 mAb (W3/25) and injected i.v. into rats with AA. Results: In vitro release of 99mTc-anti-CD4 mAb from the cells was limited (on average 1.57%/h for macrophages and 0.84%/h for T-cells). Following i.v. injection, whole body/joint scans and tissue measurements showed only negligible accumulation of radioactivity in inflamed ankle joints (tissue: 0.22 and 0.34% of the injected activity, respectively), whereas the radioactivity was concentrated in liver (tissue: 79% and 71%, respectively), kidney, and urinary bladder. Unlike macrophages, however, anti-CD4 mAb-coated T-cells significantly accumulated in lymphoid organs, the inflamed synovial membrane of the ankle joints, as well as in elbow and knee joints. Conclusion: While the overall contribution of cell-bound mAbs to the imaging of arthritic joints with anti-CD4 mAbs is minimal, differential accumulation of macrophages and T-cells in lymphoid organs and the inflamed synovial membrane indicates preferential migration patterns of these 2 cell populations in arthritic rats. Although only validated for 99mTc-anti-CD4 mAbs, extrapolation of the results to other anticellular mAbs with similar affinity for their antigen may be possible.


Sign in / Sign up

Export Citation Format

Share Document