Transmembrane Signal and Icosanoid Release in the Secretory Process of A 23187-Stimulated Leukocytes

Author(s):  
M. Braquet ◽  
R. Ducousso ◽  
M.-Y. Chapelat ◽  
P. Borgeat ◽  
F. V. DeFeudis ◽  
...  
Keyword(s):  
Author(s):  
W.N. Bentham ◽  
V. Rocha

It has been an interest of our lab to develop a mammary epethelial cell culture system that faithfully duplicates the in vivo condition of the lactating gland. Since the introduction of collagen as a matrix on which cells are cultivated other E.C.M. type matrices have been made available and are used in many cell culture techniques. We have previously demonstrated that cells cultured on collagen and Matrigel do not differentiate as they do in vivo. It seems that these cultures often produce cells that show a disruption in the secretory process. The appearance of large ribosomal studded vesicles, that specifically label with antibody to casein, suggest an interruption of both protein maturation and secretion at the E.R. to golgi transition. In this report we have examined cultures on collagen and Matrigel at relative high and low seeding densities and compared them to cells from the in vivo condition.


1991 ◽  
Vol 65 (05) ◽  
pp. 573-577 ◽  
Author(s):  
Jean McPherson ◽  
Marjorie B Zucker ◽  
Evelyn A Mauss ◽  
Sandra Brownlea

SummaryRistocetin-induced platelet agglutination (RIPA) in EDTA-treated citrated platelet-rich plasma was reduced to 49 ± 11% by 1.25 ΜM ADP, 41 ± 14% by 1 ΜM A 23187, and 26 ± 7% by 0.1 Μg/ml platelet activating factor (PAF). The effect of 5-110 ΜM epinephrine was not dose-dependent, but varied between donors, with RIPA from 56-100% of the control. The inhibitory effects of these agonists were not altered by prior treatment of platelets with aspirin. Prior addition of 200 ΜM ATP (an ADP receptor antagonist acting at both high and low affinity ADP receptors) prevented the inhibitory action of ADP but not that of A 23187 or PAF, suggesting that the inhibitory actions of the latter are not mediated by released ADP. As 700 ΜM 8-bromoadenosine 5-diphosphate (an ADP receptor antagonist acting mainly at the high affinity receptor) did not prevent ADP-induced inhibition of RIPA, interaction of ADP with the low affinity receptor is presumably responsible for its inhibitory action. As A 23187, but not phorbol myristate acetate (0.1 ΜM) inhibited RIPA, an increase in intracellular calcium ions rather than direct stimulation of protein kinase C appears to mediate agonist-induced inhibition. Cytochalasin B (10.5-21 ΜM), dibucaine (0.5-1 mM), and prostaglandin E1 (25 nM), added before or after the agonist, prevented or reversed ADP-, A23187-, and PAF-induced inhibition of RIPA, suggesting that the state of the platelet cytoskeleton affects inhibition. N-ethylmaleimide (0.25-0.5 mM), an agent that can penetrate cell membranes and block sulphydryl groups, prevented or reversed ADP, A 23187- and PAF-induced inhibition of RIPA, but 0.5 mM dithionitrobisbenzoic acid, a non-penetrating sulphydryl blocker, had no effect. Diamide (0.1-0.5 mM), an agent that can crosslink cytoskeletal proteins by oxidation of sulphydryl groups, reduced RIPA. Thus an increase in intracellular calcium ions with resultant cytoskeletal changes and reorganisation of intracellular sulphydryl groups may mediate the inhibitory action of agonists on RIPA.


1983 ◽  
Vol 50 (04) ◽  
pp. 804-809 ◽  
Author(s):  
Torstein Lyberg

SummaryHuman monocytes in vitro respond to various agents (immune complexes, lectins, endotoxin, the divalent ionophore A 23187, 12-0-tetradecanoyl-phorbol 13-acetate [TPA], purified protein derivative [PPD] of Bacille Calmette-Guerin) with an increased synthesis of the protein component of thromboplastin. The effect of cyclic AMP and cyclic GMP on this response has been studied. Dibutyryl-cyclic AMP, prostaglandin E1 and the phosphodiesterase inhibitors 3-butyl-1-methyl-xanthine (MIX) and rac -4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 201724), separately and in combination have a pronounced inhibitory effect on the response to immune complexes and PPD, and a moderate effect on the response to endotoxin and lectins. The effect on TPA response and on the response to A 23187 was slight. Dibutyryl-cyclic GMP (1 mM) gave a slight inhibition of the TPA arid IC response, but had essentially no effect on the response to other inducers. The intracellular cAMP level increased when monocytes were incubated with IC, TPA or A 23187 followed by a decrease to basal levels within 1-2 hr, whereas lectin (PHA) and PPD did not induce such changes. The cAMP response to endotoxin varied. Stimulation with IC induced an increase in monocyte cGMP levels, whereas the other stimulants did not cause such changes.


1996 ◽  
Vol 270 (4) ◽  
pp. G701-G707 ◽  
Author(s):  
M. Guzman ◽  
G. Velasco ◽  
J. Castro

Incubation of rat hepatocytes with extracellular ATP inhibited acetyl-CoA carboxylase (ACC) activity and fatty acid synthesis de novo, with a concomitant decrease of intracellular malonyl-CoA concentration. However, both carnitine O-palmitoyltransferase I (CPT-I) activity and ketogenesis from palmitate were inhibited in parallel by extracellular ATP. The inhibitory effect of extracellular ATP on ACC and CPT-I activities was not evident in Ca2+ -depleted hepatocytes. Incubation of hepatocytes with thapsigargin, 2,5-di-(t-butyl)-1,4-benzohydroquinone (BHQ), or A-23187, compounds that increase cytosolic free Ca2+ concentration ([Ca2+]i), depressed ACC activity, whereas CPT-I activity was unaffected. The phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) increased ACC activity, whereas it decreased CPT-I activity in a nonaddictive manner with respect to extracellular ATP. The inhibitory effect of extracellular ATP on ACC activity was also evident in the presence of bisindolyl-maleimide, a specific inhibitor of protein kinase C (PKC), whereas this compound abolished the extracellular ATP-mediated inhibition of CPT-I. In addition, the PMA-induced inhibition of CPT-I was not potentiated by thapsigargin, BHQ, or A-23187. Results thus show 1) that the intracellular concentration of malonyl-CoA is not the factor responsible for the inhibition of hepatic long-chain fatty acid oxidation by extracellular ATP, and 2) that the inhibition of ACC by extracellular ATP may be mediated by an elevation of [Ca2+]i, whereas CPT-I may be inhibited by extracellular ATP through a PKC-dependent mechanism.


1991 ◽  
Vol 261 (6) ◽  
pp. C1162-C1172 ◽  
Author(s):  
E. Page ◽  
J. Upshaw-Earley ◽  
G. E. Goings ◽  
D. A. Hanck

We have used a noncontracting in vitro preparation of stretched and unstretched rat atria to estimate contributions of constitutive and regulated pathways to the rates of stretch-augmented and basal secretion of immunoreactive atrial natriuretic peptide (ANP) and to examine effects of inhibition of the secretory sequence by 1) protein synthesis inhibitors, 2) disruption of forward vesicular traffic between endoplasmic reticulum and Golgi with brefeldin A (BFA, and 3) cellular ATP depletion. Protein synthesis inhibition with cycloheximide for 44 min slowed neither basal nor stretch-augmented ANP secretion but instead accelerated stretch-augmented secretion at low (but not at physiological) external Ca2+ concentration, suggesting that the constitutive component does not contribute substantially to either basal or stretch-augmented secretion. BFA, which disassembled Golgi cisternae, increased the stretch-augmented secretory rate via the regulated pathway and prevented Ca(2+)-dependent inactivation with time. Cellular ATP depletion rapidly and completely inhibited stretch-augmented secretion. We conclude that both basal and stretch-augmented utilize the energy-dependent regulated pathway, drawing on a large reservoir of concentrated prohormone stored in granules that is not detectably depleted during 44 min of stretch-augmented secretion at 37 degrees C.


1984 ◽  
Vol 105 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Donald L. Curry ◽  
Leslie L. Bennett

Abstract. Rat pancreas perfusions were performed using a perfusate with a fixed calcium concentration of 5 mEq/l and magnesium varying from 0 to 0.6 mEq/dl. Insulin secretion was stimulated by a constant glucose infusion of 300 mg/dl. This glucose concentration produces the typical biphasic insulin secretory response. We observed that in the absence of magnesium, somatostatin concentrations of 0.5 and 2.0 ng/ml were without effect on first phase insulin secretion. However, these same somatostatin levels produced 50% or more inhibition of insulin secretion in the presence of magnesium at 0.3 or 0.6 mEq/l. Similarly, in the absence of magnesium, somatostatin at 50 ng/ml failed to inhibit second phase insulin secretion, whereas this same somatostatin level produced about 50% inhibition of insulin secretion in the presence of magnesium at 0.3 mEq/l. Thus, altering perfusate magnesium concentrations without changing calcium is an important determinant of the degree of inhibition of secretion produced by somatostatin. In particular, in the absence of magnesium ion, somatostatin concentrations which would 'normally' produce 50% inhibition of secretion (ID50) are without effect. Therefore, magnesium ion is necessary for the full inhibitory effect of somatostatin to occur. These results suggest that inhibitors, as well as potentiators, of the insulin secretory process may act by altering intracellular/membrane calcium-magnesium ratios, but in opposite directions.


1955 ◽  
Vol 121 (2) ◽  
pp. 187-205 ◽  
Author(s):  
Robert Hadek
Keyword(s):  

1976 ◽  
Vol 144 (6) ◽  
pp. 1657-1673 ◽  
Author(s):  
P M Henson ◽  
D Gould ◽  
E L Becker

The effect of organophosphorus inhibitors of serine esterases (proteases) on secretion from washed rabbit platelets was examined. Five noncytotoxic stimuli were employed: collagen, thrombin, heterologous anti-platelet antibody (in the absence of complement), rabbit C3 bound to zymosan, and platelet activating factor derived from antigen-stimulated, IgE-sensitized rabbit basophils. Diisoprophyl phosphofluoridate, three series of p-nitrophenyl ethyl phosphonates, and a series of cyclohexyl phenylalkylphosphonofluridates were all found to be inhibitory to the platelet secretion. These are irreversible inhibitors of serine proteases but in this system were only inhibitory if added to the platelets concurrently with the stimuli. Pretreatment of either the platelets or the stimuli with the inhibitors followed by washing, was without effect on the subsequent reaction. This suggested the involvement of stimulus-activatable serine proteases in the secretory process. The concept was supported by finding that nonphosphorylating phosphonates or hydrolyzed phosphonates or phosphonofluoridates were without inhibitory action. The effect of a series of phosphonates or phosphonoflouridates in inhibiting each stimulus exhibited a unique activity-structure profile. The demonstration of such unique profiles with four series of inhibitors for each of the five stimuli was interpreted as demonstrating that a specific activatable serine protease was involved in the platelet secretory response to each stimulus.


Sign in / Sign up

Export Citation Format

Share Document