The Viability of the Peritoneal Membrane in Long-Term Continuous Ambulatory Peritoneal Dialysis Patients

Author(s):  
Giorgio Bazzato ◽  
Ugo Coli ◽  
Silvano Landini ◽  
Agostino Fracasso ◽  
Paolo Morachiello ◽  
...  
1989 ◽  
Vol 9 (1) ◽  
pp. 75-78 ◽  
Author(s):  
Min Sun Park ◽  
Jean Lee ◽  
Moon Sung Lee ◽  
Seung Ho Baick ◽  
Seung Duk Hwang ◽  
...  

In order to evaluate peritoneal membrane function and responsiveness of peritoneal microcirculation to vasoactive agents in long-term continuous ambulatory peritoneal dialysis (CAPD) patients, we studied peritoneal clearances of urea (Curea) and creatinine (Ccr), protein concentrations in drained dialysate (D PC), peritoneal glucose absorption (% GA), and drained dialysate volume ( VD) before and after nitroprusside (NP) addition to dialysis solution in 17 long-term CAPD patients (mean duration of CAPD: 52 months) and the results were compared to those of 18 patients who were just trained for CAPD (mean duration: 0.6 month). There were no differences in the control (without NP) Curea, Ccr, D PC, %GA, and VD between the new and long-term CAPD patients. Curea, Ccr, and D PC increased significantly with NP in both new and long-term patients. Curea and Ccr with NP were not different between the new and long-term patients but D PC with NP was significantly lower in the long-term CAPD patients. The results of this study suggest that peritoneal solute clearances and the responsiveness of peritoneal microcirculation to NP remain unchanged after four years of CAPD, despite recurrent episodes of peritonitis.


2008 ◽  
Vol 28 (3_suppl) ◽  
pp. 107-113
Author(s):  
Talerngsak Kanjanabuch ◽  
Monchai Siribamrungwong ◽  
Rungrote Khunprakant ◽  
Sirigul Kanjanabuch ◽  
Piyathida Jeungsmarn ◽  
...  

⋄ Background Continuous exposure of the peritoneal membrane to dialysis solutions during long-term dialysis results in mesothelial cell loss, peritoneal membrane damage, and thereby, ultrafiltration (UF) failure, a major determinant of mortality in patients on continuous ambulatory peritoneal dialysis (CAPD). Unfortunately, none of tests available today can predict long-term UF decline. Here, we propose a new tool to predict such a change. ⋄ Mesothelial cells from 8-hour overnight effluents (1.36% glucose dialysis solution) were harvested, co-stained with cytokeratin (a mesothelial marker) and TUNEL (an apoptotic marker), and were counted using flow cytometry in 48 patients recently started on CAPD. Adequacy of dialysis, UF, nutrition status, dialysate cancer antigen 125 (CA125), and a peritoneal equilibration test (3.86% glucose peritoneal dialysis solution) were simultaneously assessed and were reevaluated 1 year later. ⋄ Results The numbers of total and apoptotic mesothelial cells were 0.19 ± 0.19 million and 0.08 ± 0.12 million cells per bag, respectively. Both numbers correlated well with the levels of end dialysate–to–initial dialysate (D/D0) glucose, dialysate-to-plasma (D/P) creatinine, and sodium dipping. Notably, the counts of cells of both types in patients with diabetes or with high or high-average transport were significantly greater than the equivalent counts in nondiabetic patients or those with low or low-average transport. A cutoff of 0.06 million total mesothelial cells per bag had sensitivity of 1 and a specificity of 0.75 in predicting a further decline in D/D0 glucose and a sensitivity of 0.86 and a specificity of 0.63 to predict a further decline in UF over a 1-year period. In contrast, dialysate CA125 and other measured parameters had low predictive values. ⋄ Conclusions The greater the loss of exfoliated cells, the worse the expected decline in UF. The ability of a count of mesothelial cells to predict a future decline in UF warrants further investigation in clinical practice.


2002 ◽  
Vol 30 (6) ◽  
pp. 566-575 ◽  
Author(s):  
T Sugimoto ◽  
M Yamakado ◽  
K Matsushita ◽  
T Iwamoto ◽  
H Tagawa

Prevention of osteoporosis and renal osteodystrophy are important for the long-term quality of life in dialysis patients. We examined whether administration of menatetrenone (vitamin K2) improves bone metabolism in continuous ambulatory peritoneal dialysis (CAPD) patients. Administration of a single dose of menatetrenone (15 mg) revealed that the 24-h pharmacodynamics in CAPD patients were comparable to those in control individuals. In a 12-month period of oral menatetrenone administration (45 mg/day), eight stable CAPD patients were studied for blood-bone metabolism parameters and for bone mineral content. Blood concentration of menatetrenone was detectable during the experiment period. Only at 12 months did active vitamin D3 and bone-type alkaline phosphatase (ALP) fall significantly, while total ALP rose significantly. Bone mineral density measured by dual-energy X-ray absorptiometry remained at the same level throughout the study period, suggesting that menatetrenone may protect against bone mineral loss in CAPD patients. These results show that the same dose of oral menatetrenone can be given to CAPD patients as to control individuals, and that menatetrenone can be used safely for 1 year in CAPD patients.


1999 ◽  
Vol 10 (12) ◽  
pp. 2585-2590
Author(s):  
STANISLAO MORGERA ◽  
SIMONE KUCHINKE ◽  
KLEMENS BUDDE ◽  
ANDREAS LUN ◽  
BERTHOLD HOCHER ◽  
...  

Abstract. In long-term peritoneal dialysis, functional deterioration of the peritoneal membrane is often associated with proliferative processes of the involved tissues leading to peritoneal fibrosis. In continuous ambulatory peritoneal dialysis (CAPD), failure to achieve target values for adequacy of dialysis is commonly corrected by increasing dwell volume; in case of ultrafiltration failure, osmolarity of the dialysate gets increased. In a prospective study, the impact of increasing dwell volume from 1500 ml to 2500 ml per dwell (volume trial) or changing the osmolarity of the dialysate from 1.36 to 3.86% glucose (hyperosmolarity trial) on the peritoneal endothelin-1 (ET-1) release was analyzed. ET-1 is known to exert significant proliferative activities on a variety of cell types leading to an accumulation of extracellular matrix. A highly significant difference in the cumulative peritoneal ET-1 synthesis was found between the low- and high-volume exchange, whereas differences in the hyperosmolarity setting were only moderate. Sixty minutes after initiating dialysis, the cumulative ET-1 synthesis was 2367 ± 1023 fmol for the 1500 ml versus 6062 ± 1419 fmol for the 2500 dwell (P < 0.0001) and 4572 ± 969 fmol versus 6124 ± 1473 fmol for the 1.36 and 3.86% glucose dwell (P < 0.05), respectively. In conclusion, increasing dwell volume leads to a strong activation of the peritoneal paracrine endothelin system. Because ET-1, apart from being a potent vasoactive peptide, contributes to fibrotic remodeling, this study indicates that volume stress-induced ET-1 release might contribute to structural alteration of the peritoneal membrane in long-term peritoneal dialysis.


2006 ◽  
Vol 26 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Hidetomo Nakamoto ◽  
Yoshindo Kawaguchi ◽  
Hiromichi Suzuki

Technique failure resulting in transfer to hemodialysis (HD) remains one of the most important challenges in long-term peritoneal dialysis (PD). In general, the proportion of patients transferring from PD to HD is much greater than the proportion transferring from HD to PD. However, technique failure rates differ considerably between and within countries. The question arises as to how technique failure rates in Japan compare with those in other countries. To address this issue, we reviewed the literature and our experience of 139 incident continuous ambulatory peritoneal dialysis (CAPD) patients from January 1995 to December 1999. Based on our review, we estimate that the 5-year technique survival rate in Japanese CAPD patients is approximately 70%, and that technique failure rate is around 7% per year. This rate is significantly lower than that in many other countries. The most common reasons for technique failure in Japan are peritoneal membrane failure, ultrafiltration loss, and inadequate dialysis. Another factor contributing to the low technique failure rate in Japan is an extremely low peritonitis rate. This may be related to good sanitation and excellent PD training programs. Peritoneal membrane failure continues to be the major challenge for long-term technique survival on PD in Japan.


1998 ◽  
Vol 5 (3) ◽  
pp. 168-178 ◽  
Author(s):  
Rafael Selgas ◽  
Maria-Auxiliadora Bajo ◽  
Ana Paiva ◽  
Gloria Del Peso ◽  
Candido Diaz ◽  
...  

2019 ◽  
Vol 32 (6) ◽  
pp. 1011-1019 ◽  
Author(s):  
Sarju Raj Singh Maharjan ◽  
Andrew Davenport

Abstract Background Optimal fluid balance for peritoneal dialysis (PD) patients requires both water and sodium removal. Previous studies have variously reported that continuous ambulatory peritoneal dialysis (CAPD) removes more or equivalent amounts of sodium than automated PD (APD) cyclers. We therefore wished to determine peritoneal dialysate losses with different PD treatments. Methods Peritoneal and urinary sodium losses were measured in 24-h collections of urine and PD effluent in patients attending for their first assessment of peritoneal membrane function. We adjusted fluid and sodium losses for CAPD patients for the flush before fill technique. Results We reviewed the results from 659 patients, mean age 57 ± 16 years, 56.3% male, 38.9% diabetic, 24.0% treated by CAPD, 22.5% by APD and 53.5% APD with a day-time exchange, with icodextrin prescribed to 72.8% and 22.7 g/L glucose to 31.7%. Ultrafiltration was greatest for CAPD 650 (300–1100) vs 337 (103–598) APD p < 0.001, vs 474 (171–830) mL/day for APD with a day exchange. CAPD removed most sodium 79 (33–132) vs 23 (− 2 to 51) APD p < 0.001, and 51 (9–91) for APD with a day exchange, and after adjustment for the CAPD flush before fill 57 (20–113), p < 0.001 vs APD. APD patients with a day exchanged used more hypertonic glucose dialysates [0 (0–5) vs CAPD 0 (0–1) L], p < 0.001. Conclusion CAPD provides greater ultrafiltration and sodium removal than APD cyclers, even after adjusting for the flush-before fill, despite greater hypertonic usage by APD cyclers. Ultrafiltration volume and sodium removal were similar between CAPD and APD with a day fill.


Sign in / Sign up

Export Citation Format

Share Document