scholarly journals Identification and Characterization of Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma Cell Lines

2015 ◽  
Vol 36 (2) ◽  
pp. 784-798 ◽  
Author(s):  
Valentina Pozzi ◽  
Davide Sartini ◽  
Romina Rocchetti ◽  
Andrea Santarelli ◽  
Corrado Rubini ◽  
...  

Background/Aims: Head and neck squamous cell carcinoma (HNSCC) ranks sixth worldwide for tumor-related mortality. A subpopulation of tumor cells, termed cancer stem cells (CSCs), has the ability to support cancer growth. Therefore, profiling CSC-enriched populations could be a reliable tool to study cancer biology. Methods: We performed phenotypic characterization of 7 HNSCC cell lines and evaluated the presence of CSCs. CSCs from Hep-2 cell line and HNSCC primary cultures were enriched through sphere formation and sphere-forming cells have been characterized both in vitro and in vivo. In addition, we investigated the expression levels of Nicotinamide N-methyltransferase (NNMT), an enzyme overexpressed in several malignancies. Results: CSC markers were markedly expressed in Hep-2 cell line, which was found to be highly tumorigenic. CSC-enriched populations displayed increased expression of CSC markers and a strong capability to form tumors in vivo. We also found an overexpression of CSC markers in tumor formed by CSC-enriched populations. Interestingly, NNMT levels were significantly higher in CSC-enriched populations compared with parental cells. Conclusion: Our study provides an useful procedure for CSC identification and enrichment in HNSCC. Moreover, results obtained seem to suggest that CSCs may represent a promising target for an anticancer therapy.

Author(s):  
Meriç Bilgiç Küçükgüven ◽  
Betül Çelebi-Saltik

: Head and Neck Squamous Cell Carcinoma (HNSCC) is categorized as the sixth most common cancer worldwide, with an incidence of more than 830,000 cases per year and a mortality rate of 50%. Tobacco use, alcohol consumption, and Human Papillomavirus infection are the prominent risks for HNSCC. Despite significant developments in the treatment of HNSCC, a high rate of recurrences makes the clinical situation worse and results in poor survival rates. Recent perspectives demonstrate that whereas epithelial transformation plays a crucial role in cancer development, tumor surrounding microenvironment takes part in progression of cancer as well. Cancer Stem Cells (CSCs), which harbor unlimited self-renewal capacity, have a crucial role in the growth of HNSCC and this cell population is responsible for tumor recurrence unless eliminated by targeted therapy. CSCs are not only a promising target for tumor therapy, but also a crucial biomarker to determine the patients at high risk for undetermined results and disease development. Just as the bone marrow which is the niche of hematopoietic and mesenchymal stem cells, is important for stem cells maintenance. Similarly, the concept of microenvironment is also important for the maintenance of CSCs. Apart from the cell-cell interactions, there are many parameters in the cancer microenvironment that affect the development of cancer, such as extracellular regulation, vascularization, microbial flora, pH and oxygenation. The purpose of this review is to introduce HNSCC, explain the role of CSCs and their microenvironment and refer to the conventional and novel targeted therapy for HNSCC and CSCs.


Author(s):  
Zhigeng Zou ◽  
Wei Zheng ◽  
Hongjun Fan ◽  
Guodong Deng ◽  
Shih-Hsin Lu ◽  
...  

Abstract Background Cancer stem cells (CSCs) are related to the patient’s prognosis, recurrence and therapy resistance in oesophageal squamous cell carcinoma (ESCC). Although increasing evidence suggests that aspirin (acetylsalicylic acid, ASA) could lower the incidence and improve the prognosis of ESCC, the mechanism(s) remains to be fully understood. Methods We investigated the role of ASA in chemotherapy/chemoprevention in human ESCC cell lines and an N-nitrosomethylbenzylamine-induced rat ESCC carcinogenesis model. The effects of combined treatment with ASA/cisplatin on ESCC cell lines were examined in vitro and in vivo. Sphere-forming cells enriched with putative CSCs (pCSCs) were used to investigate the effect of ASA in CSCs. Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) was performed to determine the alterations in chromatin accessibility caused by ASA in ESCC cells. Results ASA inhibits the CSC properties and enhances cisplatin treatment in human ESCC cells. ATAC-seq indicates that ASA treatment results in remarkable epigenetic alterations on chromatin in ESCC cells, especially their pCSCs, through the modification of histone acetylation levels. The epigenetic changes activate Bim expression and promote cell death in CSCs of ESCC. Furthermore, ASA prevents the carcinogenesis of NMBzA-induced ESCC in the rat model. Conclusions ASA could be a potential chemotherapeutic adjuvant and chemopreventive drug for ESCC treatment.


2015 ◽  
Vol 47 (4) ◽  
pp. 1249-1256 ◽  
Author(s):  
KAZUYA YATA ◽  
LEVENT BEKIR BEDER ◽  
SHUNJI TAMAGAWA ◽  
MUNEKI HOTOMI ◽  
YOSHIHIKO HIROHASHI ◽  
...  

2019 ◽  
Vol 41 (4) ◽  
pp. 458-466 ◽  
Author(s):  
Osama A Elkashty ◽  
Ghada Abu Elghanam ◽  
Xinyun Su ◽  
Younan Liu ◽  
Peter J Chauvin ◽  
...  

Abstract Head and neck squamous cell carcinoma (HNSCC) has a poor 5-year survival rate of 50%. One potential reason for treatment failure is the presence of cancer stem cells (CSCs). Several cell markers, particularly CD44, have been used to isolate CSCs. However, isolating a pure population of CSC in HNSCC still remains a challenging task. Recent findings show that normal oral stem cells were isolated using CD271 as a marker. Thus, we investigated the combined use of CD271 and CD44 to isolate an enriched subpopulation of CSCs, followed by their characterization in vitro, in vivo, and in patients’ tissue samples. Fluorescent-activated cell sorting was used to isolate CD44+/CD271+ and CD44+/CD271− from two human HNSCC cell lines. Cell growth and self-renewal were measured with MTT and sphere/colony formation assays. Treatment-resistance was tested against chemotherapy (cisplatin and 5-fluorouracil) and ionizing radiation. Self-renewal, resistance, and stemness-related genes expression were measured with qRT-PCR. In vivo tumorigenicity was tested with an orthotopic immunodeficient mouse model of oral cancer. Finally, we examined the co-localization of CD44+/CD271+ in patients’ tissue samples. We found that CD271+ cells were a subpopulation of CD44+ cells in human HNSCC cell lines and tissues. CD44+/CD271+ cells exhibited higher cell proliferation, sphere/colony formation, chemo- and radio-resistance, upregulation of CSCs-related genes, and in vivo tumorigenicity when compared to CD44+/CD271− or the parental cell line. These cell markers showed increased expression in patients with the increase of the tumor stage. In conclusion, using both CD44 and CD271 allowed the isolation of CSCs from HNSCC. These enriched CSCs will be more relevant in future treatment and HNSCC progression studies.


2009 ◽  
Vol 3 (1) ◽  
pp. 224
Author(s):  
A. Okamoto ◽  
K. Chikamatsu ◽  
K. Sakakura ◽  
K. Hatsushika ◽  
G. Takahashi ◽  
...  

2016 ◽  
Vol 23 (10) ◽  
pp. 2516-2527 ◽  
Author(s):  
Samuel A. Kerk ◽  
Kelsey A. Finkel ◽  
Alexander T. Pearson ◽  
Kristy A. Warner ◽  
Zhaocheng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document