human squamous cell carcinoma
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 21)

H-INDEX

38
(FIVE YEARS 3)

Author(s):  
Karmele Valencia ◽  
Cristina Sainz ◽  
Cristina Bértolo ◽  
Gabriel de Biurrun ◽  
Jackeline Agorreta ◽  
...  

There is a paucity of adequate mouse models and cell lines available to study lung squamous cell carcinoma (LUSC). We have generated and characterized two models of phenotypically different transplantable LUSC cell lines (UN-SCC679 and UN-SCC680) derived from an N-nitroso-tris-chloroethylurea (NTCU) chemically-induced mouse model in A/J mice. Furthermore, we genetically characterized and compared both LUSC cell lines by performing whole exome and RNA sequencing. These experiments revealed similar genetic and transcriptomic patterns that may correspond to the classical LUSC human subtype. In addition, we compared the immune landscape generated by both tumor cells lines in vivo and assessed their response to immune checkpoint inhibition. The differences between the two cell lines are a good model for the remarkable heterogeneity of human squamous cell carcinoma. Study of the metastatic potential of these models revealed that both cell lines represent the human LUSC organotropism to the brain, bones, liver and adrenal glands. In summary, we have generated a very valuable cell line tools for LUSC research that recapitulates the complexity of the human disease.


Author(s):  
Túlio Morandin Ferrisse ◽  
Analú Barros de Oliveira ◽  
Amanda Koberstain Surur ◽  
Helen Sordi Buzo ◽  
Fernanda Lourenção Brighenti ◽  
...  

2021 ◽  
Author(s):  
Chiung-Ying Chang ◽  
Zohar Shipony ◽  
Ann Kuo ◽  
Kyle M Loh ◽  
William J Greenleaf ◽  
...  

Mammalian SWI/SNF (BAF) chromatin remodelers play dosage-sensitive roles in many human malignancies and neurologic disorders. The gene encoding the BAF subunit, ACTL6A, is amplified at an early stage in the development of squamous cell carcinomas (SCCs), but its oncogenic role remains unclear. Here we demonstrate that ACTL6A overexpression leads to its stoichiometric assembly into BAF complexes and drives its interaction and engagement with specific regulatory regions in the genome. In normal epithelial cells, ACTL6A was sub-stoichiometric to other BAF subunits. However, increased ACTL6A levels by ectopic expression or in SCC cells led to near-saturation of ACTL6A within BAF complexes. Increased ACTL6A occupancy enhanced polycomb opposition over the genome activating SCC genes and also enhanced the recruitment of transcription factor TEAD with its co-activator YAP, promoting their chromatin binding and enhancer accessibility. Both of these mechanisms appeared to be critical and function as a molecular AND gate for SCC initiation and maintenance, thereby explaining the specificity of the role of ACTL6A amplification in SCCs.


2021 ◽  
Author(s):  
Chiung-Ying Chang ◽  
Zohar Shipony ◽  
Ann Kuo ◽  
Kyle M. Loh ◽  
William J. Greenleaf ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2318
Author(s):  
Federico Armando ◽  
Francesco Godizzi ◽  
Elisabetta Razzuoli ◽  
Fabio Leonardi ◽  
Mario Angelone ◽  
...  

Squamous cell carcinoma (SCC) is one of the most frequent tumors of skin and muco-cutaneous junctions in the horse. Equine papillomavirus type 2 (EcPV2) has been detected in equine SCC of the oral tract and genitals, and recently also in the larynx. As human squamous cell carcinoma of the larynx (SCCL), it is strongly etiologically associated with high-risk papillomavirus (h-HPV) infection. This study focuses on tumor cells behavior in a naturally occurring tumor that can undergo the so-called epithelial to mesenchymal transition (EMT). A SCCL in a horse was investigated by immunohistochemistry using antibodies against E-cadherin, pan-cytokeratin AE3/AE1, β-catenin, N-cadherin, vimentin, ZEB-1, TWIST, and HIF-1α. EcPV2 DNA detection and expression of oncogenes in SCC were investigated. A cadherin switch and an intermediate filaments rearrangement within primary site tumor cells together with the expression of the EMT-related transcription factors TWIST-1, ZEB-1, and HIF-1α were observed. DNA obtained from the tumor showed EcPV2 positivity, with E2 gene disruption and E6 gene dysregulation. The results suggest that equine SCCL might be a valuable model for studying EMT and the potential interactions between EcPV2 oncoproteins and the EMT process in SCCL.


2020 ◽  
Vol 133 (23) ◽  
pp. jcs249102
Author(s):  
Ji Ling ◽  
Maria Sckaff ◽  
Manisha Tiwari ◽  
Yifang Chen ◽  
Jingting Li ◽  
...  

ABSTRACTProper epithelial development and homeostasis depends on strict control of oriented cell division. Current evidence shows that this process is regulated by intrinsic polarity factors and external spatial cues. Owing to the lack of an appropriate model system that can recapitulate the architecture of the skin, deregulation of spindle orientation in human epithelial carcinoma has never been investigated. Here, using an inducible model of human squamous cell carcinoma (SCC), we demonstrate that RAS-dependent suppression of PAR3 (encoded by PARD3) accelerates epithelial disorganization during early tumorigenesis. Diminished PAR3 led to loss of E-cadherin-mediated cell adhesion, which in turn contributed to misoriented cell division. Pharmacological inhibition of the MAPK pathway downstream of RAS activation reversed the defects in PAR3 expression, E-cadherin-mediated cell adhesion and mitotic spindle orientation. Thus, temporal analysis of human neoplasia provides a powerful approach to study cellular and molecular transformations during early oncogenesis, which allowed identification of PAR3 as a critical regulator of tissue architecture during initial human SCC development.


2020 ◽  
Vol 5 (2) ◽  
pp. 1-16
Author(s):  
Craig A. Elmets ◽  
Nabiha Yusuf

Some chemicals act as human carcinogens in various organ systems including the skin. Mice have been an ideal model to study a wide variety of chemical carcinogens because the pathogenesis in that species often mirrors that in humans. However, different mouse strains vary in their susceptibility to these agents. Thus, reliance on a single strain may lead to inaccurate findings. 2-Ethylhexyl acrylate (2-EHA) is an acrylate used as a co-monomer in the production of polymer resins for adhesives, latex paints, cross-linking agents, finishes for textiles and leather, and paper coatings. Monomer exposure may occur in occupational settings where it is produced or used; the only exposure that may occur to consumers or construction personnel is trace amounts in the final polymer product. There are no reports of cancer in humans caused by exposure to 2-EHA. However, 2-EHA has been reported to cause cancer in one strain of mice. This is an important issue since recommendations about its safety in humans depend, in part, on information derived from animal studies. We reviewed the literature on the preclinical effects of acrylates on skin carcinogenesis in C3H/HeJ mice, which can be criticized because of peculiarities in the immunological composition of that strain, the lack of rigorous histopathologic characterization of tumors that developed, the high doses of 2-EHA that were used for evaluation, and the lack of reproducibility in a second strain of mice. The C3H/HeJ mouse model is not ideal as it has a mutation in Toll-like receptor 4 (TLR4) that impairs its innate and adaptive immune responses. Inconsistencies in the histological evaluation of tumors induced in C3H/HeJ mice provide further evidence that the tumorigenic effect of 2-EHA was strain specific, a result of chronic inflammation during the promotion stage and/or a skewed immune response caused by the TLR4 mutation. In conclusion, 2-EHA has not convincingly been demonstrated to have skin carcinogenic activity to date. More relevant mouse models that mimic human squamous cell carcinoma, basal cell carcinoma, and melanoma with amounts that do not exceed a maximum tolerated dose are needed to assess the carcinogenic effects of 2-EHA.


Cell ◽  
2020 ◽  
Vol 182 (6) ◽  
pp. 1661-1662 ◽  
Author(s):  
Andrew L. Ji ◽  
Adam J. Rubin ◽  
Kim Thrane ◽  
Sizun Jiang ◽  
David L. Reynolds ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document