scholarly journals Centromere Repositioning in Cattle (Bos taurus) Chromosome 17

2017 ◽  
Vol 151 (4) ◽  
pp. 191-197 ◽  
Author(s):  
Lisa De Lorenzi ◽  
Alessandra Iannuzzi ◽  
Elena Rossi ◽  
Stefania Bonacina ◽  
Pietro Parma

Eukaryotic organisms have developed a structure, called centromere, able to preserve the integrity of the genome during cell division. A young bull from the Marchigiana breed, with a normal external phenotype, underwent routine cytogenetic analysis to enter the reproduction center. All metaphases analyzed showed an unusual biarmed chromosome of medium size despite a diploid set of chromosomes (2n = 60,XY). FISH analysis excluded a pericentric inversion or a reciprocal translocation, but highlighted a repositioning of the centromere in BTA17. The satellite DNA was still in an acrocentric position. The telomeres were normally present. The primary constriction on the abnormal chromosome was C-band negative. Finally, the absence of a large genomic deletion in the BTA17 pericentromeric region was demonstrated by both array-CGH analysis and SNP array. To our knowledge, this is the first case of centromere repositioning reported in cattle.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1656-1656
Author(s):  
Manja Meggendorfer ◽  
Claudia Haferlach ◽  
Wolfgang Kern ◽  
Susanne Schnittger ◽  
Torsten Haferlach

Abstract Introduction: Isochromosome 17 (i(17q)) is a rare cytogenetic abnormality resulting in the loss of the short arm and the duplication of the long arm of chromosome 17. i(17q) has been reported in different myeloid neoplasms like acute myeloid leukemia (AML), chronic myeloid leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap, as well as in Hodgkin- and non-Hodgkin-lymphoma. i(17q) has been described both as primary and as secondary chromosomal aberration. In myeloid neoplasms i(17q) as sole abnormality is suggested to define a distinctive clinicopathological entity with a high risk to leukemic progression and poor prognosis. So far, however, it is only briefly mentioned in the WHO classification. Aim: To comprehensively characterize the molecular features of patients with myeloid neoplasms and i(17q). Patients and Methods: Patients were selected by the presence of i(17q) and diagnosis of a myeloid neoplasm. Philadelphia positive CML were excluded. The cohort comprised 62 cases, 47 males and 15 females with a median age of 69 years (range: 30 - 87 years). Classification of all cases was performed by cytomorphology on peripheral blood and/or bone marrow smears according to the WHO. Chromosome banding and FISH analysis were performed in all cases. 19/27 cases with sole i(17q) were additionally analyzed by array CGH. All 62 samples were analyzed by next generation sequencing using a 29-gene panel targeting ASXL1, BCOR, BRAF, CALR, CBL, CSF3R, DNMT3A, ETV6, EZH2, FLT3-TKD, GATA1, GATA2, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, and WT1. Variants of unknown significance were excluded from statistical analyses (n=14). Results: Following WHO classification four of the 62 patients were diagnosed as MPN, 13 as MDS/MPN overlap, 24 as MDS, and 21 as AML. 27 cases showed i(17q) as sole abnormality, while 23 cases showed additional chromosome aberrations, and eight even a complex karyotype (>3 aberrations). Further four cases had two independent cell clones, with one harboring the sole i(17q) abnormality. Array CGH revealed that in 15/19 cases i(17q) was the only abnormality, while four patients showed additional aberrations (1-3 per patient): loss of 7p, 7q, 12p, gain of 13q, and CN-LOH 19p and 22q (n=2). The comprehensive mutational analyses revealed only 3/62 patients carrying no mutation, while a median of 3 mutations per patient was observed (range 0-6). The three most frequently mutated genes were ASXL1 (66%, 41/62), SRSF2 (65%, 40/62), and SETBP1 (48%, 30/62) with no association to any WHO entity, indicating the presence of this genetic profile also across entities beyond the expected overlap between different neoplasms. Following genes showed mutation frequencies >10%: TET2 (24%), ETV6 (16%), CBL (13%), TP53 (15%), RUNX1 (11%), and NRAS (10%), all genes known for adverse prognostic impact. Interestingly, mutations in the three most frequently mutated genes ASXL1, SRSF2, and SETBP1 often co-occurred (n=21) and ASXL1 and SRSF2 were rarely mutated alone (n=9; n=5), while SETBP1 was even never mutated solely, indicating acquirement of SETBP1 mutations during disease course. Therefore, SETBP1 mutations associated significantly with mutations in ASXL1 as well as SRSF2 (24/41 vs 6/21 in ASXL1 wild type (wt), p=0.033; 27/40 vs 3/22 in SRSF2 wt, p<0.001). Furthermore, mutations in ASXL1 associated significantly with i(17q) sole in comparison to cases with additional chromosomal aberrations (22/27 vs 19/35, p=0.032). Therefore, also cases harboring mutations in all three genes ASXL1, SRSF2, and SETBP1 associated with sole i(17q) (13/27 vs 8/35, p=0.058), indicating that these three mutations might be drivers of disease pathogenesis in this cytogenetic background. Reviewing the bone marrow morphology showed characteristic pseudo-Pelger-Huet anomaly in 36 of 59 (61%) analyzed smears. These changes were not associated with the cytogenetic profile, but showed a trend towards co-occurrence with ASXL1 mutations (27/39 vs 9/20 ASXL1 wt p=0.094). Conclusion: 1) Myeloid neoplasms with i(17q) show a distinct molecular mutation pattern, accumulating prognostically adverse mutations. 2) Patients with sole i(17q) show co-occurring mutations in ASXL1, SRSF2, and SETBP1. 3) Frequency and co-existence of ASXL1, SRSF2, and SETBP1 mutations predispose these as driver mutations. Disclosures Meggendorfer: MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Diagnostics ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 825
Author(s):  
Francesco Fortarezza ◽  
Federica Pezzuto ◽  
Gerardo Cazzato ◽  
Clelia Punzo ◽  
Antonio d’Amati ◽  
...  

The breast phyllodes tumor is a biphasic tumor that accounts for less than of 1% of all breast neoplasms. It is classified as benign, borderline, or malignant, and can mimic benign masses. Some recurrent alterations have been identified. However, a precise molecular classification of these tumors has not yet been established. Herein, we describe a case of a 43-year-old woman that was admitted to the emergency room for a significant bleeding from the breast skin. A voluminous ulcerative mass of the left breast and multiple nodules with micro-calcifications on the right side were detected at a physical examination. A left total mastectomy and a nodulectomy of the right breast was performed. The histological diagnosis of the surgical specimens reported a bilateral giant phyllodes tumor, showing malignant features on the left and borderline characteristics associated with a fibroadenoma on the right. A further molecular analysis was carried out by an array-Comparative Genomic Hybridization (CGH) to characterize copy-number alterations. Many losses were detected in the malignant mass, involving several tumor suppressor genes. These findings could explain the malignant growth and the metastatic risk. In our study, genomic profiling by an array-CGH revealed a greater chromosomal instability in the borderline mass (40 total defects) than in the malignant (19 total defects) giant phyllodes tumor, reflecting the tumor heterogeneity. Should our results be confirmed with more sensitive and specific molecular tests (DNA sequencing and FISH analysis), they could allow a better selection of patients with adverse pathological features, thus optimizing and improving patient’s management.


2021 ◽  
Vol 43 (3) ◽  
pp. 237-249 ◽  
Author(s):  
Thanh Dat Ta ◽  
Nomar Espinosa Waminal ◽  
Thi Hong Nguyen ◽  
Remnyl Joyce Pellerin ◽  
Hyun Hee Kim

Abstract Background DNA tandem repeats (TRs) are often abundant and occupy discrete regions in eukaryotic genomes. These TRs often cause or generate chromosomal rearrangements, which, in turn, drive chromosome evolution and speciation. Tracing the chromosomal distribution of TRs could therefore provide insights into the chromosome dynamics and speciation among closely related taxa. The basic chromosome number in the genus Senna is 2n = 28, but dysploid species like Senna tora have also been observed. Objective To understand the dynamics of these TRs and their impact on S. tora dysploidization. Methods We performed a comparative fluorescence in situ hybridization (FISH) analysis among nine closely related Senna species and compared the chromosomal distribution of these repeats from a cytotaxonomic perspective by using the ITS1-5.8S-ITS2 sequence to infer phylogenetic relationships. Results Of the nine S. tora TRs, two did not show any FISH signal whereas seven TRs showed similar and contrasting patterns to other Senna species. StoTR01_86, which was localized in the pericentromeric regions in all S. tora, but not at the nucleolar organizer region (NOR) site, was colocalized at the NOR site in all species except in S. siamea. StoTR02_7_tel was mostly localized at chromosome termini, but some species had an interstitial telomeric repeat in a few chromosomes. StoTR05_180 was distributed in the subtelomeric region in most species and was highly amplified in the pericentromeric region in some species. StoTR06_159 was either absent or colocalized in the NOR site in some species, and StoIGS_463, which was localized at the NOR site in S. tora, was either absent or localized at the subtelomeric or pericentromeric regions in other species. Conclusions These data suggest that TRs play important roles in S. tora dysploidy and suggest the involvement of 45S rDNA intergenic spacers in “carrying” repeats during genome reshuffling.


2021 ◽  
pp. 112067212110307
Author(s):  
Raquel María Moral ◽  
Carlos Monteagudo ◽  
Javier Muriel ◽  
Lucía Moreno ◽  
Ana María Peiró

Introduction: Conjunctival melanoma is extremely rare in children and has low rates of resolution. Definitive histopathological diagnosis based exclusively on microscopic findings is sometimes difficult. Thus, early diagnosis and adequate treatment are essential to improve clinical outcomes. Clinical case: We present the first case in which the fluorescent in situ hybridization (FISH) diagnostic technique was applied to a 10-year-old boy initially suspected of having amelanotic nevi in his right eye. Based on the 65% of tumor cells with 11q13 (CCND1) copy number gain and 33% with 6p25 (RREB1) gain as measured by the FISH analysis, and on supporting histopathological findings, the diagnosis of conjunctival melanoma could be made. Following a larger re-excision, adjuvant therapy with Mitomycin C (MMC), cryotherapy and an amniotic membrane graft, the patient has remained disease-free during 9 years of long-term follow-up. Case discussion: Every ophthalmologist should remember to consider and not forget the possibility of using FISH analyses during the differential diagnosis of any suspicious conjunctival lesions. Genetic techniques, such as FISH, have led to great advances in the classification of ambiguous lesions. Evidence-based guidelines for diagnosing conjunctival melanoma in the pediatric population are needed to determine the most appropriate strategy for this age group.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Dan Li ◽  
Yun Wang ◽  
Nan Zhao ◽  
Liang Chang ◽  
Ping Liu ◽  
...  

Abstract Background Uniparental disomy (UPD) refers to the situation in which two copies of homologous chromosomes or part of a chromosome originate from the one parent and no copy is supplied by the other parent. Case presentation Here, we reported a woman whose karyotype was 46, XX, t (1;17)(q42;q21), has obtained 5 embryos by intracytoplasmic sperm injection (ICSI) after one cycle of in vitro fertility (IVF). After microarray-based comparative genomic hybridization (array-CGH) for preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR), two embryos were balanced, one balanced embryo was implanted and the patient successfully achieved pregnancy. Amniocentesis was performed at the 19th week of gestation for karyotype analysis and single nucleotide polymorphism (SNP)-array test. The result of karyotype analysis was: mos 47, XXY [19]/46, XY [81]; SNP-array results revealed 46, XY, iUPD (9) pat. After full genetic counseling for mosaic Klinefelter’s syndrome and paternal iUPD (9), the couple decided to continue pregnancy, and the patient gave birth to a healthy boy. The newborn is now 3.5 years old, and developed normally. This case will provide counseling evidences of paternal iUPD (9) for doctors. Conclusions This is the first case report of paternal iUPD9 with mosaic Klinefelter’s syndrome, and no abnormality has been observed during the 3.5-year follow-up. Further observation is required to determine whether the imprinted genes on the chromosomes are pathogenic and whether recessive pathogenetic genes are activated.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1312
Author(s):  
Warren M. Snelling ◽  
Jesse L. Hoff ◽  
Jeremiah H. Li ◽  
Larry A. Kuehn ◽  
Brittney N. Keel ◽  
...  

Decreasing costs are making low coverage sequencing with imputation to a comprehensive reference panel an attractive alternative to obtain functional variant genotypes that can increase the accuracy of genomic prediction. To assess the potential of low-pass sequencing, genomic sequence of 77 steers sequenced to >10X coverage was downsampled to 1X and imputed to a reference of 946 cattle representing multiple Bos taurus and Bos indicus-influenced breeds. Genotypes for nearly 60 million variants detected in the reference were imputed from the downsampled sequence. The imputed genotypes strongly agreed with the SNP array genotypes (r¯=0.99) and the genotypes called from the transcript sequence (r¯=0.97). Effects of BovineSNP50 and GGP-F250 variants on birth weight, postweaning gain, and marbling were solved without the steers’ phenotypes and genotypes, then applied to their genotypes, to predict the molecular breeding values (MBV). The steers’ MBV were similar when using imputed and array genotypes. Replacing array variants with functional sequence variants might allow more robust MBV. Imputation from low coverage sequence offers a viable, low-cost approach to obtain functional variant genotypes that could improve genomic prediction.


2014 ◽  
Vol 34 (8) ◽  
pp. 806-808 ◽  
Author(s):  
M. I. Srebniak ◽  
M. J. Bos ◽  
F. A. T. de Vries ◽  
R. Heydanus ◽  
M. W. Wessels ◽  
...  

Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 306 ◽  
Author(s):  
Pablo Mora ◽  
Jesús Vela ◽  
Areli Ruiz-Mena ◽  
Teresa Palomeque ◽  
Pedro Lorite

Ladybird beetles (Coccinellidae) are one of the largest groups of beetles. Among them, some species are of economic interest since they can act as a biological control for some agricultural pests whereas other species are phytophagous and can damage crops. Chnootriba argus (Coccinellidae, Epilachnini) has large heterochromatic pericentromeric blocks on all chromosomes, including both sexual chromosomes. Classical digestion of total genomic DNA using restriction endonucleases failed to find the satellite DNA located on these heterochromatic regions. Cloning of C0t-1 DNA resulted in the isolation of a repetitive DNA with a repeat unit of six base pairs, TTAAAA. The amount of TTAAAA repeat in the C. argus genome was about 20%. Fluorescence in situ hybridization (FISH) analysis and digestion of chromosomes with the endonuclease Tru9I revealed that this repetitive DNA could be considered as the putative pericentromeric satellite DNA (satDNA) in this species. The presence of this satellite DNA was tested in other species of the tribe Epilachnini and it is also present in Epilachna paenulata. In both species, the TTAAAA repeat seems to be the main satellite DNA and it is located on the pericentromeric region on all chromosomes. The size of this satDNA, which has only six base pairs is unusual in Coleoptera satellite DNAs, where satDNAs usually have repeat units of a much larger size. Southern hybridization and FISH proved that this satDNA is conserved in some Epilachnini species but not in others. This result is in concordance with the controversial phylogenetic relationships among the genera of the tribe Epilachnini, where the limits between genera are unclear.


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Chiara Magri ◽  
Eleonora Marchina ◽  
Valeria Bertini ◽  
Michele Traversa ◽  
Giulia Savio ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
Rupesh R. Sanap ◽  
Arundhati S. Athalye ◽  
Prochi F. Madon ◽  
Boman N. Dhabhar ◽  
Mahendra B. Sute ◽  
...  

Sjögren’s syndrome (SS) is a chronic slowly progressive autoimmune disorder characterized by symptoms of oral and ocular dryness, exocrine dysfunction, and lymphocytic infiltration of exocrine glands. Multiple myeloma (MM) is a bone-marrow-based malignant neoplasm of plasma cells associated with serum/urine monoclonal paraproteins and lytic skeletal lesions. There have been very few reported cases of MM, who had SS as the first presentation. We report a case of a woman diagnosed with Sjögren’s syndrome, who was later suspected to have multiple myeloma on serum protein electrophoresis. Fluorescencein situhybridization (FISH) was carried out to check for deletions of loci 13q14.3, ATM, p53, and IGH (14q32) rearrangements on a bone marrow aspirate. Monosomy 13 was observed in 49% of cells, and a rearrangement at the IGH locus was seen in 42% of cells. To determine the partner chromosome associated with the IGH rearrangement, further FISH tests were set up for t(4;14)(p16;q32) followed by t(14;16)(q32;q22) on fresh slides. The test was negative for t(4;14) but positive for t(14;16) in 27% of cells. This confirmed the diagnosis of MM. We report the first case from India, having an association of Sjögren’s syndrome with multiple myeloma, which showed t(14;16) and monosomy 13 by FISH analysis.


Sign in / Sign up

Export Citation Format

Share Document