scholarly journals Age-Related Insulin-Like Growth Factor Binding Protein-4 Overexpression Inhibits Osteogenic Differentiation of Rat Mesenchymal Stem Cells

2017 ◽  
Vol 42 (2) ◽  
pp. 640-650 ◽  
Author(s):  
Jinhui Wu ◽  
Chao Wang ◽  
Xiong Miao ◽  
Yungang Wu ◽  
Jiabin Yuan ◽  
...  

Background/Aims: Insulin-like growth factor binding proteins (IGFBP) play important roles in bone metabolism. IGFBP4 is involved in senescent-associated phenomena in mesenchymal stem cells (MSCs). The goal of the present study was to determine whether age-related IGFBP4 overexpression is associated with the impaired osteogenic differentiation potential of aged bone marrow derived MSCs. Methods: MSCs were isolated from Sprague-Dawley rats aged 3–26 months. The bone morphogenetic protein (BMP)-2-induced osteogenic differentiation of rat MSCs was assessed by analyzing the expression levels of osteoblast marker genes [runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteocalcin (OC)], ALP activity and calcification. Results: Our study showed that IGFBP4 mRNA and protein expression increased with age in parallel with impaired osteogenic differentiation of MSCs cultured in BMP2-containing osteogenic medium, as evidenced by the downregulation of osteoblast marker genes, and decreased ALP activity and calcium deposits. IGFBP4 overexpression impaired BMP2-induced osteogenic differentiation potential of young MSCs, whereas IGFBP4 knockdown restored the osteogenic potency of aged MSCs. Moreover, IGFBP4 knockdown stimulated the activation of Erk and Smad by increasing phosphorylation. Conclusion: Collectively, our results demonstrate that IGFBP4 overexpression plays a role in the impairment of MSC differentiation potential via the Erk and Smad pathways, suggesting potential targets to improve MSC function for cell therapy applications.

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Doaa Aboalola ◽  
Victor K. M. Han

Insulin-like growth factor binding protein-6 (IGFBP-6), the main regulator of insulin-like growth factor-2 (IGF-2), is a component of the stem cell niche in developing muscle cells. However, its role in muscle development has not been clearly defined. In this study, we investigated the role of IGFBP-6 in muscle commitment and differentiation of human mesenchymal stem cells derived from the placenta. We showed that placental mesenchymal stem cells (PMSCs) have the ability to differentiate into muscle cells when exposed to a specific culture medium by expressing muscle markers Pax3/7, MyoD, myogenin, and myosin heavy chain in a stage-dependent manner with the ultimate formation of multinucleated fibers and losing pluripotency-associated markers, OCT4 and SOX2. The addition of IGFBP-6 significantly increased pluripotency-associated markers as well as muscle differentiation markers at earlier time points, but the latter decreased with time. On the other hand, silencing IGFBP-6 decreased both pluripotent and differentiation markers at early time points. The levels of these markers increased as IGFBP-6 levels were restored. These findings indicate that IGFBP-6 influences MSC pluripotency and myogenic differentiation, with more prominent effects observed at the beginning of the differentiation process before muscle commitment.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lin Liu ◽  
Kun Liu ◽  
Yanzhe Yan ◽  
Zhuangzhuang Chu ◽  
Yi Tang ◽  
...  

Objectives. Enhanced migration and osteogenic differentiation of mesenchymal stem cells (MSCs) are beneficial for MSC-mediated periodontal tissue regeneration, a promising method for periodontitis treatment. FBXO5, a member of the F-box protein family, is involved in the osteogenic differentiation of MSCs. Here, we investigated the effect of FBXO5 on human periodontal ligament stem cells (hPDLSCs). Materials and Methods. hPDLSCs were isolated from periodontal ligament tissue. Lentivirus FBXO5 shRNA was used to silence FBXO5 expression. Two transcripts of FBXO5 were overexpressed and transduced into hPDLSCs via retroviral infection. Migration and osteogenic differentiation of hPDLSCs were evaluated using the scratch migration assay, alkaline phosphatase (ALP) activity, ALP staining, alizarin red staining, western blotting, and real-time polymerase chain reaction. Results. The expression of FBXO5 was upregulated after osteogenic induction in hPDLSCs. FBXO5 knockdown attenuated migration, inhibited ALP activity and mineralization, and decreased RUNX2, OSX, and OCN expression, while the overexpression of two transcript isoforms significantly accelerated migration, enhanced ALP activity and mineralization, and increased RUNX2, OSX, and OCN expression in hPDLSCs. Conclusions. Both isoforms of FBXO5 promoted the migration and osteogenic differentiation potential of hPDLSCs, which identified a potential target for improving periodontal tissue regeneration.


Aging ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 1987-2004 ◽  
Author(s):  
Irina Vassilieva ◽  
Vera Kosheverova ◽  
Mikhail Vitte ◽  
Rimma Kamentseva ◽  
Alla Shatrova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document