Palmitic Acid Increases Endothelin-1 Expression in Vascular Endothelial Cells through the Induction of Endoplasmic Reticulum Stress and Protein Kinase C Signaling

Cardiology ◽  
2018 ◽  
Vol 140 (3) ◽  
pp. 133-140 ◽  
Author(s):  
Juan Zhang ◽  
Wen-Shu Zhao ◽  
Xin Wang ◽  
Lin Xu ◽  
Xin-Chun Yang

Objective: We investigated the regulation of endothelin-1 (ET-1) expression in in vivo high-fat diet (HFD)-fed mice and in vitro cultured human aortic endothelial cells (HAECs). Methods: Male C57BL/6 mice were fed on standard chow, serum was prepared, and ET-1 levels were analyzed using an ELISA kit. Quantitative PCR was performed using iQ SYBR Green Supermix. Statistical significance was assessed using SPSS, with p < 0.05 considered significant. Results: The serum ET-1 content and endothelial expression of ET-1 mRNA were increased in the HFD-fed mice compared to the chow-fed control mice. Moreover, the mRNA expression of ET-1 was significantly increased in cultured HAECs in response to acute (< 24 h) and chronic (12–16 days) treatments with palmitic acid (PA), one of the most abundant saturated fatty acids in obesity. We found that the induction of ET-1 expression by PA was abolished by pretreating the cells with the endoplasmic reticulum (ER) stress inhibitor 4-phenylbutyric acid or the protein kinase C (PKC) inhibitor Gö 6850. Conclusion: Our findings demonstrate for the first time that PA increases ET-1 expression in endothelial cells through the induction of ER stress and the activation of PKC, providing novel mechanistic insights into the pathogenesis of obesity-associated hypertension and cardiovascular diseases.

1993 ◽  
Vol 264 (1) ◽  
pp. H150-H156 ◽  
Author(s):  
M. J. Kuchan ◽  
J. A. Frangos

The effect of shear stress on the release of endothelin-1 (ET-1) from endothelial cells is at present controversial with various investigators observing an increase and others observing a decrease. Our data reveal that the release of ET-1 from primary cultures of human umbilical vein endothelial cells varies with the duration and the level of shear. Sustained exposure to low levels of shear (1.8 dyn/cm2) or a brief exposure (< 1 h) to 10 dyn/cm2 caused a sustained stimulation of ET-1 release. Staurosporine (STPN) completely blocked the stimulation in both cases, suggesting that ET-1 release is increased via activation of protein kinase C (PKC). Exposure to 6-25 dyn/cm2 for > or = 6 h dramatically inhibited ET-1 release and led to 0-70% inhibition of cumulative release by 16 h. Pretreatment with N omega-nitro-L-arginine (L-NNA) reversed this suppression in a dose-dependent manner, implicating either nitric oxide (NO) and/or guanosine 3',5'-cyclic monophosphate (cGMP) as a requirement for shear-mediated inhibition of ET-1 release. Treatment of stationary cultures with 8-bromo-cGMP and atrial natriuretic peptide mimicked the inhibition of ET-1 release caused by shear and revealed that cGMP is capable of inhibiting ET-1. Likewise, the inhibitory effects of shear were potentiated and diminished by 3-isobutyl-1-methylxanthine (IBMX) and methylene blue, respectively. Thus cGMP also appears to exert an inhibitory effect in cells exposed to shear.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 63 (5) ◽  
pp. 1567-1573 ◽  
Author(s):  
Isabelle Eude ◽  
Brigitte Paris ◽  
Dominique Cabrol ◽  
Françoise Ferré ◽  
Michelle Breuiller-Fouché

2003 ◽  
Vol 303 (3) ◽  
pp. 891-895 ◽  
Author(s):  
Joong-Yeol Park ◽  
Yun Mi Kim ◽  
Hai Sun Song ◽  
Ki Young Park ◽  
Young Mi Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document