Shenduning Granule Attenuates Renal Injury from Oxidative Stress through the Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway

Pharmacology ◽  
2019 ◽  
Vol 103 (5-6) ◽  
pp. 236-245
Author(s):  
Xiao-Jun Fu ◽  
Shuang-Yan Hu

Background: Systemic oxidative stress has been reported to play a central role in the pathogenesis of kidney function decline. The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is one of the important endogenous antioxidant stress pathways in cells. This study aims to investigate whether shenduning granule can ameliorate oxidative stress in kidney tissues by activating the Nrf2/ARE pathway, and explores the detailed underlying mechanism. Methods: A total of 120 male Sprague-Dawley rats were randomly assigned to the sham-operated and operation groups. Rats in the operation group underwent 5/6 nephrectomy. Two weeks later, rats in the operation group were further randomly divided into 5 groups: model group, low-dose, medium-dose and high-dose shenduning granule groups, and losartan group. Rats in each group were given the same volume of corresponding liquid orally. Serum creatinine (SCr), blood urea nitrogen (BUN), 24-h urinary protein, malondialdehyde (MDA) and superoxide dismutase (SOD), Nrf2, heme oxygenase-1 (HO-1), and γ-glutamyl-cysteine synthetase (γ-GCS) were determined. Results: Shenduning granule could markedly elevate HO-1, NRF2, γ-GCS and SOD (p < 0.05), and significantly decreased MDA, 24-h urinary protein, SCr and BUN in rats (p < 0.05). Conclusion: Shenduning granule can improve renal antioxidative stress activity in rats, exhibiting a renoprotective effect. The potential mechanism is likely exerted by the activation of the Nrf2/ARE pathway.

2019 ◽  
Vol 20 (24) ◽  
pp. 6131 ◽  
Author(s):  
Yafang Wang ◽  
Fugui Jiang ◽  
Haijian Cheng ◽  
Xiuwen Tan ◽  
Yifan Liu ◽  
...  

Oxidative stress can damage intestinal epithelial cell integrity and function, causing gastrointestinal disorders. Astragaloside IV (ASIV) exhibits a variety of biological and pharmacological properties, including anti-inflammatory and antioxidant effects. The purpose of this research was to investigate the cytoprotective action of ASIV and its mechanisms in calf small intestine epithelial cells with hydrogen peroxide (H2O2)-induced oxidative stress. ASIV pretreatment not only increased cell survival, but it also decreased reactive oxygen species generation and apoptosis, enhanced superoxide dismutase, catalase, and glutathione peroxidase levels, and it reduced malondialdehyde formation. Furthermore, pretreatment with ASIV elevated the mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (NFE2L2), heme oxygenase-1 (HMOX1), and NAD(P)H quinone dehydrogenase 1 (NQO1). The NFE2L2 inhibitor ML385 inhibited NFE2L2 expression and then blocked HMOX1 and NQO1 expression. These results demonstrate that ASIV treatment effectively protects against H2O2-induced oxidative damage in calf small intestine epithelial cells through the activation of the NFE2L2-antioxidant response element signaling pathway.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Ming Zhu ◽  
Hyounggee Baek ◽  
Ruiwu Liu ◽  
Aimin Song ◽  
Kit Lam ◽  
...  

The antioxidant response element (ARE) and its transcription factor, nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), are potential targets for cancer chemoprevention. We sought to screen small molecules synthesized with combinatorial chemistry for activation of ARE. By high-throughput screening of 9400 small molecules from 10 combinatorial chemical libraries using HepG2 cells with an ARE-driven reporter, we have identified a novel small molecule, 1,2-dimethoxy-4,5-dinitrobenzene (LAS0811), as an activator of the ARE. LAS0811 upregulated the activity of NAD(P)H:quinone oxidoreductase 1 (NQO1), a representative antioxidative enzyme regulated by ARE. It enhanced production of an endogenous reducing agent, glutathione (GSH). In addition, LAS0811 induced expression of heme oxygenase 1 (HO1), which is an ARE-regulated enzyme with anti-inflammatory activity. Furthermore, LAS0811 reduced cell death due to the cytotoxic stress of a strong oxidant, t-butyl hydroperoxide (t-BOOH). Mechanistically, LAS0811 upregulated the expression of Nrf2 and promoted its translocation into the nuclei leading to subsequent ARE activation. Taken together, LAS0811 is a novel activator of the ARE and its associated detoxifying genes and, thus, a potential agent for cancer chemoprevention.


2012 ◽  
Vol 29 (5) ◽  
pp. 936-945 ◽  
Author(s):  
Xiaoliang Wang ◽  
Juan Pablo de Rivero Vaccari ◽  
Handong Wang ◽  
Paulo Diaz ◽  
Ramon German ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document