scholarly journals Glutathione Biosynthesis via Activation of the Nuclear Factor E2–Related Factor 2 (Nrf2) – Antioxidant-Response Element (ARE) Pathway Is Essential for Neuroprotective Effects of Sulforaphane and 6-(Methylsulfinyl) Hexyl Isothiocyanate

2011 ◽  
Vol 115 (3) ◽  
pp. 320-328 ◽  
Author(s):  
Keita Mizuno ◽  
Toshiaki Kume ◽  
Chie Muto ◽  
Yuki Takada-Takatori ◽  
Yasuhiko Izumi ◽  
...  
2012 ◽  
Vol 29 (5) ◽  
pp. 936-945 ◽  
Author(s):  
Xiaoliang Wang ◽  
Juan Pablo de Rivero Vaccari ◽  
Handong Wang ◽  
Paulo Diaz ◽  
Ramon German ◽  
...  

Pharmacology ◽  
2019 ◽  
Vol 103 (5-6) ◽  
pp. 236-245
Author(s):  
Xiao-Jun Fu ◽  
Shuang-Yan Hu

Background: Systemic oxidative stress has been reported to play a central role in the pathogenesis of kidney function decline. The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is one of the important endogenous antioxidant stress pathways in cells. This study aims to investigate whether shenduning granule can ameliorate oxidative stress in kidney tissues by activating the Nrf2/ARE pathway, and explores the detailed underlying mechanism. Methods: A total of 120 male Sprague-Dawley rats were randomly assigned to the sham-operated and operation groups. Rats in the operation group underwent 5/6 nephrectomy. Two weeks later, rats in the operation group were further randomly divided into 5 groups: model group, low-dose, medium-dose and high-dose shenduning granule groups, and losartan group. Rats in each group were given the same volume of corresponding liquid orally. Serum creatinine (SCr), blood urea nitrogen (BUN), 24-h urinary protein, malondialdehyde (MDA) and superoxide dismutase (SOD), Nrf2, heme oxygenase-1 (HO-1), and γ-glutamyl-cysteine synthetase (γ-GCS) were determined. Results: Shenduning granule could markedly elevate HO-1, NRF2, γ-GCS and SOD (p < 0.05), and significantly decreased MDA, 24-h urinary protein, SCr and BUN in rats (p < 0.05). Conclusion: Shenduning granule can improve renal antioxidative stress activity in rats, exhibiting a renoprotective effect. The potential mechanism is likely exerted by the activation of the Nrf2/ARE pathway.


Sign in / Sign up

Export Citation Format

Share Document