scholarly journals Enhancement of digital signature algorithm in bitcoin wallet

2021 ◽  
Vol 10 (1) ◽  
pp. 449-457
Author(s):  
Farah Maath Jasem ◽  
Ali Makki Sagheer ◽  
Abdullah M. Awad

Bitcoin is a peer-to-peer electronic cash system largely used for online financial transactions. It gained popularity due to its anonymity, privacy, and comparatively low transaction cost. Its wallet heavily relies on Elliptic Curve Digital Signature Algorithm (ECDSA). Weaknesses in such algorithms can significantly affect the safety and the security of bitcoin wallets. In this paper, a secure key management wallet was designed based on several changes in the wallet parts. In the cold wallet, we employed an image-based passphrase to achieve a strong entropy source of master seed. The hot wallet, the proposed key_ Gen algorithm is modifying to the key generation step of the ECDSA that it is to generate a fresh key pair at each transaction. The final part ensures recovering all keys on both hot and cold wallets without daily backups in case of losing the wallet. The findings prove that the proposed cold wallet is resisting against a dictionary attack and overcoming the memorizing problem. The proposed hot wallet model acquires good anonymity and privacy for bitcoin users by eliminating transaction likability without additional cost. The execution time for signing a transaction of the proposed model is~70 millisecond, which is then important in the bitcoin domain.

Author(s):  
Dhanalakshmi Senthilkumar

Blockchain is the process of development in bitcoin. It's a digitized, decentralized, distributed ledger of cryptocurrency transactions. The central authorities secure that transaction with other users to validate transactions and record data, data is encrypted and immutable format with secured manner. The cryptography systems make use for securing the process of recording transactions in private and public key pair with ensuring secrecy and authenticity. Ensuring bitcoin transaction, to be processed in network, and ensuring transaction used for elliptic curve digital signature algorithm, all transactions are valid and in chronological order. The blockchain systems potential to transform financial and model of governance. In Blockchain, databases hold their information in an encrypted state, that only the private keys must be kept, so these AI algorithms are expected to increasingly be used, whether financial transactions are fraudulent, and should be blocked or investigated.


In this paper, we propose an Enhanced Digital Signature Algorithm (EDSA) for verifying the data integrity while storing the data in cloud database. The proposed EDSA is developed by using the Elliptic Curves that are generated by introducing an improved equation. Moreover, the proposed EDSA generates two elliptic curves by applying the upgraded equation in this work. These elliptic curve points were used as a public key which is used to perform the signing and verification processes. Moreover, a new base formula is also introduced for performing digital signature operations such as signing, verification and comparison. From the base formula, we have derived two new formulas for performing the signing process and verification process in EDSA. Finally, the proposed EDSA compares the resultant values of the signing and verification processes and it checks the document originality. The experimental results proved that the efficiency of the proposed EDSA in terms of key generation time, signing time and verification time by conducting various experiments


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2962
Author(s):  
Xingda Chen ◽  
Margaret Lech ◽  
Liuping Wang

Security is one of the major concerns of the Internet of Things (IoT) wireless technologies. LoRaWAN is one of the emerging Low Power Wide Area Networks being developed for IoT applications. The latest LoRaWAN release v.1.1 has provided a security framework that includes data confidentiality protection, data integrity check, device authentication and key management. However, its key management part is only ambiguously defined. In this paper, a complete key management scheme is proposed for LoRaWAN. The scheme addresses key updating, key generation, key backup, and key backward compatibility. The proposed scheme was shown not only to enhance the current LoRaWAN standard, but also to meet the primary design consideration of LoRaWAN, i.e., low power consumption.


Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 289
Author(s):  
Renato Carauta Ribeiro ◽  
Murilo Góes de Almeida ◽  
Edna Dias Canedo

The digital signature of documents and degrees is a topic widely discussed in the Federal Public Administration. Several laws and ordinances were created to standardize the issuance, validation and legal validity of digitally signed documents in national territory, such as the ordinances created by the Ministry of Education (MEC) to regulate the issuance of degrees in digital format. These ordinances created guidelines and standards that must be adopted by Federal Universities for the signing of in digital format. The main objective of this work is to study these ordinances, the main technologies and digital signature standards used in the literature to create a digital signature system model for University of Brasília-UnB, which complies with the MEC and ICP-Brazil standards. Moreover, the model must be developed with the main standards and technologies in the market, cohesive to the current UnB architecture, easy to maintain and update to new standards that may emerge, and also be a fully open source project. An architectural model and a prototype in Java language were developed using XAdES4j library as a microservice intermediated by the bus used in UnB. The prototype developed was compared with the current digital signature system named C3Web. The comparative tests and results between the two solutions showed that the current system used in UnB does not perform the signature in accordance with the standard proposed by the MEC, in addition to being a private system using proprietary technologies for the execution of digital signatures. The tests performed with the proposed model demonstrated that it performs the digital signature in accordance with the XAdES-T standard, regulations of the MEC and ICP-Brazil. In addition, the solution presented a performance comparable to the current system used by UnB with a little more effective security than the current system used. The current model developed in this work can be a basis for the creation of future subscription systems for Brazilian Universities.


Sign in / Sign up

Export Citation Format

Share Document