Blockchain and Its Integration as a Disruptive Technology

Author(s):  
Dhanalakshmi Senthilkumar

Blockchain is the process of development in bitcoin. It's a digitized, decentralized, distributed ledger of cryptocurrency transactions. The central authorities secure that transaction with other users to validate transactions and record data, data is encrypted and immutable format with secured manner. The cryptography systems make use for securing the process of recording transactions in private and public key pair with ensuring secrecy and authenticity. Ensuring bitcoin transaction, to be processed in network, and ensuring transaction used for elliptic curve digital signature algorithm, all transactions are valid and in chronological order. The blockchain systems potential to transform financial and model of governance. In Blockchain, databases hold their information in an encrypted state, that only the private keys must be kept, so these AI algorithms are expected to increasingly be used, whether financial transactions are fraudulent, and should be blocked or investigated.

Author(s):  
Andreas Bolfing

This chapter provides a very detailed introduction to cryptography. It first explains the cryptographic basics and introduces the concept of public-key encryption which is based on one-way and trapdoor functions, considering the three major public-key encryption families like integer factorization, discrete logarithm and elliptic curve schemes. This is followed by an introduction to hash functions which are applied to construct Merkle trees and digital signature schemes. As modern cryptoschemes are commonly based on elliptic curves, the chapter then introduces elliptic curve cryptography which is based on the Elliptic Curve Discrete Logarithm Problem (ECDLP). It considers the hardness of the ECDLP and the possible attacks against it, showing how to find suitable domain parameters to construct cryptographically strong elliptic curves. This is followed by the discussion of elliptic curve domain parameters which are recommended by current standards. Finally, it introduces the Elliptic Curve Digital Signature Algorithm (ECDSA), the elliptic curve digital signature scheme.


Author(s):  
Gopala Krishna Behara ◽  
Tirumala Khandrika

Blockchain is a digital, distributed, and decentralized network to store information in a tamper-proof way with an automated way to enforce trust among different participants. An open distributed ledger can record all transactions between different parties efficiently in a verifiable and permanent way. It captures and builds consensus among participants in the network. Each block is uniquely connected to the previous blocks via a digital signature which means that making a change to a record without disturbing the previous records in the chain is not possible, thus rendering the information tamper-proof. Blockchain holds the potential to disrupt any form of transaction that requires information to be trusted. This means that all intermediaries of trust, as they exist today, exposed to disruption in some form with the initiation of Blockchain technology. Blockchain works by validating transactions through a distributed network in order to create a permanent, verified, and unalterable ledger of information.


Author(s):  
R. Anitha ◽  
R. S. Sankarasubramanian

This chapter presents a new simple scheme for verifiable encryption of elliptic curve digital signature algorithm (ECDSA). The protocol we present is an adjudicated protocol, that is, the trusted third party (TTP) takes part in the protocol only when there is a dispute. This scheme can be used to build efficient fair exchanges and certified email protocols. In this paper we also present the implementation issues. We present a new algorithm for multiplying two 2n bits palindromic polynomials modulo xp–1 for prime p = 2n + 1 for the concept defined in Blake, Roth, and Seroussi (1998), and it is compared with the Sunar-Koc parallel multiplier given in Sunar and Koc (2001).


2018 ◽  
Vol 10 (3) ◽  
pp. 42-60 ◽  
Author(s):  
Sahar A. El-Rahman ◽  
Daniyah Aldawsari ◽  
Mona Aldosari ◽  
Omaimah Alrashed ◽  
Ghadeer Alsubaie

IoT (Internet of Things) is regarded as a diversified science and utilization with uncommon risks and opportunities of business. So, in this article, a digital signature mobile application (SignOn) is presented where, it provides a cloud based digital signature with a high security to sustain with the growth of IoT and the speed of the life. Different algorithms were utilized to accomplish the integrity of the documents, authenticate users with their unique signatures, and encrypt their documents in order to provide the best adopted solution for cloud-based signature in the field of IoT. Where, ECDSA (Elliptic Curve Digital Signature Algorithm) is utilized to ensure the message source, Hash function (SHA-512) is used to detect all information variations, and AES (Advanced Encryption Standard) is utilized for more security. SignOn is considered as a legal obligated way of signing contracts and documents, keeping the data in electronic form in a secure cloud environment and shortens the duration of the signing process. Whereas, it allows the user to sign electronic documents and then, the verifier can validate the produced signature.


2001 ◽  
Vol 1 (1) ◽  
pp. 36-63 ◽  
Author(s):  
Don Johnson ◽  
Alfred Menezes ◽  
Scott Vanstone

Sign in / Sign up

Export Citation Format

Share Document