scholarly journals Brake by wire control with pedal feedback and brake boost

2021 ◽  
Vol 10 (6) ◽  
pp. 3042-3051
Author(s):  
W. A. Shanaka P. Abeysiriwardhana ◽  
A. M. Harsha S. Abeykoon

"By wire" technology merged into multiple vehicular subsystems, including gear changing, drive, and braking systems. The brake by wire system is developed to overcome the problems associated with the integration of mechanical and hydraulic systems in novel vehicular systems. Even though brake by wire systems has potential advantages, the conventional brake systems' tactile sensation will be removed if migrated to the electrical by wire control scheme. This paper proposes a novel control mechanism that provides amplification of force, scaling of position replication, and a virtual spring-damper based pedal retraction which provides bilateral brake force feedback to the driver's pedal similar to the hydraulic brake system. The proposed system performance was simulated and tested using a bilateral teleoperation system with disturbance observers (DOB) and reaction force observers (RFOB). The proposed system provides pedal force amplification and brake force feedback to the driver's pedal using RFOBs. The virtual spring retracts the brake pedal, similar to a mechanical pedal retraction system. The system simulation and experimental results provide evidence of the proposed system's force amplification, position scaling, and pedal reaction capabilities.

Robotica ◽  
2015 ◽  
Vol 34 (9) ◽  
pp. 2151-2161 ◽  
Author(s):  
E. Slawiñski ◽  
S. García ◽  
L. Salinas ◽  
V. Mut

SUMMARYThis paper proposes a control scheme applied to the delayed bilateral teleoperation of mobile robots with force feedback in face of asymmetric and time-varying delays. The scheme is managed by a velocity PD-like control plus impedance and a force feedback based on damping and synchronization error. A fictitious force, depending on the robot motion and its environment, is used to avoid possible collisions. In addition, the stability of the system is analyzed from which simple conditions for the control parameters are established in order to assure stability. Finally, the performance of the delayed teleoperation system is shown through experiments where a human operator drives a mobile robot.


Robotica ◽  
2019 ◽  
Vol 37 (10) ◽  
pp. 1768-1784 ◽  
Author(s):  
E. Slawiñski ◽  
V. Moya ◽  
D. Santiago ◽  
V. Mut

SummaryThis document proposes a control scheme for delayed bilateral teleoperation of a mobile robot, which it is sought to achieve a coordination of the master device position with the slave mobile robot velocity, and at the same time synchronize the force exerted by the operator with force applied by the environment over the mobile robot. This approach allows the operator to improve the sensitive perception of the remote environment in which the robot navigates while he generates commands to control the mobile robot motion. In this paper, variable and asymmetrical communication time delays are taken into account, as well as a non-passive model of the human operator, for which a novel model is proposed that has a more general structure than the typical ones used to date in the teleoperation field. Furthermore, based on the theoretical analysis presented, the state of convergence in the stationary response is obtained. In addition, an experimental performance evaluation is carried out, where the position–velocity error, force error and the time to complete the task are evaluated. In the tests, a human operator commands a remote mobile robot to push objects of different weight while he perceives the weight of each object through the force feedback system. As an outcome, the theoretical and practical results obtained allow concluding that a satisfactory trade-off between stability and transparency is reached.


Robotica ◽  
2020 ◽  
pp. 1-19
Author(s):  
Viviana Moya ◽  
Emanuel Slawiñski ◽  
Vicente Mut

SUMMARY This paper proposes a shared control scheme which aims to achieve a stable control of the speed and turn of a bipedal robot during a delayed bilateral teleoperation. The strategy allows to get a delay-dependent damping value that must be injected to assure a bounded response of the hybrid system, while simultaneously, the human operator receives a force feedback that help him to decrease the synchronism error. Furthermore, a test where a human operator handles the walking of a simulated bipedal robot, to follow a curve path in front of varying time delay, is performed and analyzed.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Franco Penizzotto ◽  
Sebastian García ◽  
Emanuel Slawiñski ◽  
Vicente Mut

This paper proposes a control scheme applied to the delayed bilateral teleoperation of wheeled robots with force feedback, considering the performance of the operator’s command execution. In addition, the stability of the system is analyzed taking into account the dynamic model of the master as well as the remote mobile robot under asymmetric and time-varying delays of the communication channel. Besides, the performance of the teleoperation system, where a human operator drives a 3D simulator of a wheeled dynamic robot, is evaluated. In addition, we present an experiment where a robot Pioneer is teleoperated, based on the system architecture proposed.


2019 ◽  
Vol 29 (4) ◽  
pp. 681-692 ◽  
Author(s):  
Edgar Estrada ◽  
Wen Yu ◽  
Xiaoou Li

Abstract Haptic guidance can improve control accuracy in bilateral teleoperation. With haptic sensing, the human operator feels that he grabs the robot on the remote side. There are results on the stability and transparency analysis of teleoperation without haptic guidance, and the analysis of teleoperation with haptic feedback is only for linear and zero time-delay systems. In this paper, we consider more general cases: the bilateral teleoperation systems have time-varying communication delays, the whole systems are nonlinear, and they have force feedback. By using the admittance human operator model, we propose a new control scheme with the interaction passivity of the teleoperator. The stability and transparency of the master-slave system are proven with the Lyapunov–Krasovskii method. Numerical simulations illustrate the efficiency of the proposed control methods.


Author(s):  
Santeri Lampinen ◽  
Janne Koivumäki ◽  
Jouni Mattila

Teleoperated robotic manipulators can be used to remotely operate within hazardous, hard to reach or dangerous environments. In tasks requiring handling of heavy objects with high forces, hydraulic manipulators have remained the most practical solution. Contrary to the previous research on teleoperation of hydraulic manipulators based on linearization and linear control theory, the present study proposes a full-dynamics-based bilateral force-reflected teleoperation, designed between a multiple degrees-of-freedom (n-DOF) electrical master manipulator and an n-DOF hydraulic slave manipulator. The used teleoperation method allows arbitrary motion and force scaling between the n-DOF manipulators, effectively enabling the use of two greatly dissimilar manipulators. The proposed teleoperation system is demonstrated with a full-scale two-DOF hydraulic slave manipulator (having 475 kg payload attached to the tip) in a free-space motion task, and in a constrained motion task including both real and virtual constraints in the environment. Despite the inherent highly nonlinear dynamic behaviour of hydraulic systems and challenges in realizing a bilateral teleoperation, the experimental results demonstrate that the proposed controller for full-dynamics-based teleoperation 1) can rigorously address the system nonlinearities, 2) can realize a high-performance bilateral teleoperation with hydraulic slave manipulators, and 3) is capable to operate in constrained motion with the environment having both real and virtual (i.e., artificially rendered) constraints.


2014 ◽  
Vol 627 ◽  
pp. 231-235
Author(s):  
Xiao Xiang Gong ◽  
Si Qin Chang ◽  
Li Chen Jiang ◽  
Xiao Pan Li

A new brake-by-wire system based on direct-drive electro-hydraulic brake unit for flexibly modulating brake force is designed to improve braking performance and ride comfort. The structure of the brake unit and the composition of the system are discussed in detail. The simulation and experiment are completed to verify the brake unit is fast responsible and reliable after studying the unit model. At last, a vehicle model based onMatlab/SimulinkandAMESimis established to verify that this new system is of fast response and is able to control brake force on every wheel independently and continuously.


2005 ◽  
Vol 128 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Ho Ching ◽  
Wayne J. Book

In a conventional bilateral teleoperation, transmission delay over the Internet can potentially cause instability. A wave variable algorithm guarantees teleoperation stability under varying transmission delay at the cost of poor transient performance. Adding a predictor on the master side can reduce this undesirable side effect, but that would require a slave model. An inaccurate slave model used in the predictor as well as variations in transmission delay, both of which are likely under realistic situations, can result in steady-state errors. A direct drift control algorithm is used to drive this error to zero, regardless of the source of the error. A semi-adaptive predictor that can distinguish between free space and a rigid contact environment is used to provide a more accurate force feedback on the master side. A full adaptive predictor is also used that estimates the environmental force using recursive least squares with a forgetting factor. This research presents the experimental results and evaluations of the previously mentioned wave-variable-based methods under a realistic operation environment using a real master and slave. The algorithm proposed is innovative in that it takes advantage of the strengths of several control methods to build a promising bilateral teleoperation setup that can function under varying transmission delay, modeling error, and changing environment. Success could lead to practical applications in various fields, such as space-based remote control, and telesurgery.


Author(s):  
Jae-Sung Im ◽  
Fuminori Ozaki ◽  
Nobutomo Matsunaga ◽  
Shigeyasu Kawaji

Author(s):  
Bennett Breese ◽  
Drew Scott ◽  
Shraddha Barawkar ◽  
Manish Kumar

Abstract Tethered drone systems can be used to perform long-endurance tasks such as area surveillance and relay stations for wireless communication. However, all the existing systems use tethers only for data and power transmission from a stationary point on the ground. This work presents a control strategy that enables a quadcopter to follow a moving tether anchor. A force feedback controller is implemented using Fuzzy Logic. Using force-based strategy provides effective compliance between the tether’s anchor and the drone. The drone can thus be controlled by mere physical movement/manipulation of tether. This enhances the safety of current tethered drone systems and simplifies the flying of drones. Fuzzy Logic provides an intuitive edge to the control of such systems and allows handling noise in force sensors. Extensive simulation results are presented in this paper showing the effectiveness of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document