scholarly journals Improved Sensorless Direct Torque Control of Induction Motor Using Fuzzy Logic and Neural Network Based Duty Ratio Controller

Author(s):  
Sudheer H ◽  
Kodad SF ◽  
Sarvesh B

This paper presents improvements in Direct Torque control of an induction motor using Fuzzy logic with Fuzzy logic and neural network based duty ratio controller. The conventional DTC (CDTC) of induction motor suffers from major drawbacks like high torque and flux ripples and poor transient response. Torque and flux ripples are reduced by replacing hysteresis controller and switching table with Fuzzy logic switching controller (FDTC). In FDTC the selected switching vector is applied for the complete switching time period. The FDTC steady state performance can be improved by using duty ratio controller, the selected switching vector is applied only for the time determined by the duty ratio (δ) and for the remaining time period zero switching vector is applied. The selection of duty ratio using Fuzzy logic and neural networks is projected in this paper. The effectiveness proposed methods are evaluated using simulation by Matlab/Simulink.

Author(s):  
Huzainirah Ismail ◽  
Fazlli Patkar ◽  
Auzani Jidin ◽  
Aiman Zakwan Jidin ◽  
Noor Azida Noor Azlan ◽  
...  

<p>Direct Torque Control (DTC) is widely applied for ac motor drives as it offers high performance torque control with a simple control strategy. However, conventional DTC poses some disadvantages especially in term of variable switching frequency and large torque ripple due to the utilization of torque hysteresis controller. Other than that, performance of conventional DTC fed by two-level inverter is also restricted by the limited numbers of voltage vectors which lead to inappropriate selection of voltage vectors for different speed operations. This research aims to propose a Constant Switching Frequency (CSF) torque controller for DTC of induction motor (IM) fed by three-level Neutral-Point Clamped (NPC) inverter. The proposed torque controller utilizes PI controller which apply different gain for different speed operation. Besides, the utilization of NPC inverter provides greater number of voltage vectors which allow appropriate selection of voltage vectors for different operating condition. Using the proposed method, the improvement of DTC drives in term of producing a constant switching operation and minimizing torque ripple are achieved and validated via experimental results.</p>


Author(s):  
Umakanta Mahanta ◽  
Bhabesh Chandra Mohanta ◽  
Anup Kumar Panda ◽  
Bibhu Prasad Panigrahi

Torque ripple reduction is one of the major challenges in switching table-based direct torque control (DTC) while operating for open phase faults of an induction motor, as the switching vectors are unevenly distributed. This can be minimized by increasing the level of the inverter and with the use of multi-phase motors. Fuzzy logic-based DTC is another solution to the above problem. In this paper, a comparative analysis is done between switching table-based DTC (ST-DTC) and fuzzy logic-based DTC for increasing the performance during open phase faults of a five-phase induction motor. The result shows that in fuzzy logic-based DTC with a two-level inverter, the torque ripple is reduced by 5.164% as compared with ST-DTC with a three-level inverter. The fuzzy logic-based DTC with the three-level inverter also gives better performance as compared with fuzzy logic-based DTC with the two-level inverter. The current ripple also reduced by 9.605% with respect to ST-DTC. Thus, fuzzy logic-based DTC is more suitable and cost effective for open phase fault-tolerant drives.


Sign in / Sign up

Export Citation Format

Share Document