Stator Inter-turn Fault Detection in Inverter Fed Induction Motor Drives

Author(s):  
Khadim Moin Siddiqui ◽  
Kuldeep Sahay ◽  
V.K. Giri

The Squirrel Cage Induction motor(SCIM) with advanced power electronic inverters presents the greater advantages on cost and energy efficiency as compared with other industrial solutions for varying speed applications. In recent, the inverter fed induction motors are being popular in the industries. These inverter fed-motors are recently gathering great recognition for multi-megawatt industrial drive applications. In this present paper, a dynamic simulation model of PWM inverter fed SCIM with direct torque control jointly has been presented and analyzed in the recent MATLAB/Simulink environment. From the proposed simulation model, the transient behavior of SCIM has been analysed for healthy as well as for stator inter-turn fault condition. The dynamic simulation of induction motor is one of the key steps in the validation of design process of the electric motor and drive system. It is extremely needed for eliminating probable faults beforehand due to inadvertent design mistakes and changes during operation. The simulated model gives encouraging results with reduced harmonics [1]. By using the model, the successful detection of stator inter-turn fault of the SCIM is carried out in the transient condition. Therefore, early stator fault detection is possible and may avoid the motor to reach in the catastrophic conditions. Therefore, may save millions of dollars for industries.

Author(s):  
Khadim Moin Siddiqui ◽  
Kuldeep Sahay ◽  
V. K. Giri

The Squirrel Cage Induction Motor (SCIM) with advanced power electronic inverters presents the greater advantages on cost and energy efficiency as compared with other industrial solutions for varying speed applications. In recent, the inverter fed induction motors are being popular in the industries. These inverter fed-motors are recently gathering great recognition for multimegawatt industrial drive applications. In this present paper, a dynamic simulation model of PWM inverter fed SCIM with direct torque control jointly has been presented and analyzed in the recent MATLAB/Simulink environment. From the proposed simulation model, the transient behavior of SCIM has been analysed for healthy as well as for stator inter-turn fault condition. The dynamic simulation of induction motor is one of the key steps in the validation of design process of the electric motor and drive system. It is extremely needed for eliminating probable faults beforehand due to inadvertent design mistakes and changes during operation. The simulated model gives encouraging results with reduced harmonics [1]. By using the model, the successful detection of stator inter-turn fault of the SCIM is carried out in the transient condition. Therefore, early stator fault detection is possible and may avoid the motor to reach in the catastrophic conditions. Therefore, may save millions of dollars for industries.


2019 ◽  
Author(s):  
R. Senthil Kumar ◽  
S. Jayanandhini ◽  
J. Jenisha ◽  
M. Jayalakshmi ◽  
S. Madhumitha

2012 ◽  
Vol 61 (3) ◽  
pp. 421-438 ◽  
Author(s):  
Krzysztof Pieńkowski

Analysis and control of dual stator winding induction motor The paper presents the mathematical models of dual stator squirrel-cage induction motor, formulated in phase coordinate system and in general transformed space vector form. The two types of models of dual stator induction motor are considered. The control systems of field-oriented control (IFOC and DFOC) and direct torque control (DTC) of the dual stator induction motor have been described and discussed.


2012 ◽  
Vol 482-484 ◽  
pp. 1985-1989
Author(s):  
Gan Zou ◽  
Tao Li ◽  
Ren Xin Xiao

Conventional direct torque control(DTC) of induction motor has the problem of large torque ripple.In addition,the speed sensor has its deficiency.A novel DTC system based on multiple neural networks optimized by Genetic Algorithm is proposed and the structures of the proposed system are designed.Genetic algorithm was used to optimize the initial weights and thresholds of the neural networks,All parameters of the neural networks were obtained by offline training.A simulation model of induction motor DTC system was developed in Matlab/Simulink,the simulation results show the feasibility and effectiveness of the scheme


2016 ◽  
Vol 26 (03) ◽  
pp. 1750049 ◽  
Author(s):  
Saber Krim ◽  
Soufien Gdaim ◽  
Abdellatif Mtibaa ◽  
Mohamed Faouzi Mimouni

The conventional direct torque control (DTC), based on the hysteresis controllers and the switching table, operates with a variable switching frequency, which decreases the conventional DTC performances, like the torque and flux ripples. Thus, the space vector modulation (SVM), used in the DTC, ensures a constant switching frequency and improves the DTC performances. The first aim of this paper is to present a comparison study between the DTC with an SVM (DTC-SVM) based on the Proportional Integral regulators (DTC-SVM-PI) and the DTC-SVM based on the sliding mode controllers (DTC-SVM-SMC). These two approaches are complex control algorithms which require faster micro-controllers; therefore the second objective of this paper is to present the implementation of the DTC-SVM-PI and the DTC-SVM-SMC on the Field Programmable Gate Array (FPGA), due to the parallel processing capability of the FPGAs. The two approaches are designed and simulated using the Xilinx System Generator (XSG) and implemented using an FPGA Virtex 5. The simulation results in the transient behavior and the steady state of the induction motor controlled by these two approaches are compared and discussed. The hardware FPGA implementation results show the effectiveness of the FPGA relative to the digital signal processor in terms of execution time.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Bekheïra Tabbache ◽  
Mohamed Benbouzid ◽  
Abdelaziz Kheloui ◽  
Jean-Matthieu Bourgeot

This paper deals with sensor fault detection within a reconfigurable direct torque control of an induction motor-based electric vehicle. The proposed strategy concerns current, voltage, and speed sensors faults that are detected and followed by post fault-tolerant control to allow the vehicle continuous operation. The proposed approach is validated through experiments on an induction motor drive and simulations on an electric vehicle using a European urban and extraurban driving cycle.


Author(s):  
Lachtar Salah ◽  
Ghoggal Adel ◽  
Koussa Khaled ◽  
Bouraiou Ahmed ◽  
Attoui Issam

The broken rotor bar is an unexpected fault and a common cause of induction motor failures that threaten the structural integrity of electric machines. In this paper, a new approach to a broken rotor bar diagnosis, without slip estimation, based on the envelope of the stator instantaneous complex apparent power (SICAP) is proposed. The envelope is obtained from the SICAP modulation and then transferred to a computer for monitoring the characteristic frequency and its amplitude using the Fast Fourier Transform (FFT). For this purpose, the winding function approach (WFA) is used to simulate the broken rotor bar occurrence in a squirrel cage induction motor (SCIM) fed on direct torque control (DTC). The obtained simulation results confirm the interest and efficiency of the proposed technique. Even when the induction motor is operating at the no-load level condition, the proposed method is also efficient to detect the broken rotor bar fault at low slip.


Sign in / Sign up

Export Citation Format

Share Document