scholarly journals A dynamic cruise control system (DCCS) for effective navigation system

Author(s):  
T. Someswari ◽  
Anil Kumar Tiwari ◽  
Nagraj R

With the fast development of artificial intelligence, robotics, and embedded system along with sensor technologies, the speed control mechanism is required in various other applications such as automatic or self-piloting aircraft, auto-driven vehicles, auto driven lifts and much other robotics based automation plants, etc. For each unpredictable and progressed vehicular framework accompanies a better route that is fit for utilizing the two GPS and INS related sign. There have been a noteworthy number of research works being completed towards creating sliding mode control framework. In case of inaccurate navigational data or no availability of navigational service, the cruise control could also stop working. Hence, there is a need to evolve up with a novel system offering reliable and fault tolerant navigation system in order to minimize the dependencies on GPS-based information and maximize the utilization of INS based information. This manuscript presents a dynamic cruise control system to achieve better navigation under uncertainties. The performance of the system is analyzed by incorporating sliding mode and fuzzy logic and achieves better accuracy in tracking error, computational complexity (28 sec of simulation time) under chattering and switching action operation.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zhi Wang ◽  
Yateng Bai ◽  
Jin Xie ◽  
Zhijie Li ◽  
Caoyuan Ma ◽  
...  

In order to overcome disturbances such as the instability of internal parameters or the actuator fault, the time-varying proportional-integral sliding-mode surface is defined for coordinated control of the excitation generator and the steam valve of waste heat power generation units, and a controller based on sliding-mode function is designed which makes the system stable for a limited time and gives it good performance. Based on this, a corresponding fault estimation law is designed for specific faults of systems, and a sliding-mode fault-tolerant controller is constructed based on the fixed-time control theory so that the systems can still operate stably when an actuator fault occurs and have acceptable performance. The simulation results show that the tracking error asymptotically tends to be zero, and the fixed-time sliding-mode fault-tolerant controller can obviously improve the dynamic performance of the system.


1983 ◽  
Vol IE-30 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Kazumasa Nakamura ◽  
Takeshi Ochiai ◽  
Kou Tanigawa

Author(s):  
Michail Makridis ◽  
Konstantinos Mattas ◽  
Daniele Borio ◽  
Raimondo Giuliani ◽  
Biagio Ciuffo

Sign in / Sign up

Export Citation Format

Share Document