scholarly journals Multi-objective Pareto front and particle swarm optimization algorithms for power dissipation reduction in microprocessors

Author(s):  
Diary R. Sulaiman

The progress of microelectronics making possible higher integration densities, and a considerable development of on-board systems are currently undergoing, this growth comes up against a limiting factor of power dissipation. Higher power dissipation will cause an immediate spread of generated heat which causes thermal problems. Consequently, the system's total consumed energy will increase as the system temperature increase. High temperatures in microprocessors and large thermal energy of computer systems produce huge problems of system confidence, performance, and cooling expenses. Power consumed by processors are mainly due to the increase in number of cores and the clock frequency, which is dissipated in the form of heat and causes thermal challenges for chip designers. As the microprocessor’s performance has increased remarkably in Nano-meter technology, power dissipation is becoming non-negligible. To solve this problem, this article addresses power dissipation reduction issues for high performance processors using multi-objective Pareto front (PF), and particle swarm optimization (PSO) algorithms to achieve power dissipation as a prior computation that reduces the real delay of a target microprocessor unit. Simulation is verified the conceptual fundamentals and optimization of joint body and supply voltages (Vth-VDD) which showing satisfactory findings.

2018 ◽  
Vol 232 ◽  
pp. 03039
Author(s):  
Taowei Chen ◽  
Yiming Yu ◽  
Kun Zhao

Particle swarm optimization(PSO) algorithm has been widely applied in solving multi-objective optimization problems(MOPs) since it was proposed. However, PSO algorithms updated the velocity of each particle using a single search strategy, which may be difficult to obtain approximate Pareto front for complex MOPs. In this paper, inspired by the theory of P system, a multi-objective particle swarm optimization (PSO) algorithm based on the framework of membrane system(PMOPSO) is proposed to solve MOPs. According to the hierarchical structure, objects and rules of P system, the PSO approach is used in elementary membranes to execute multiple search strategy. And non-dominated sorting and crowding distance is used in skin membrane for improving speed of convergence and maintaining population diversity by evolutionary rules. Compared with other multi-objective optimization algorithm including MOPSO, dMOPSO, SMPSO, MMOPSO, MOEA/D, SPEA2, PESA2, NSGAII on a benchmark series function, the experimental results indicate that the proposed algorithm is not only feasible and effective but also have a better convergence to true Pareto front.


2011 ◽  
Vol 1 ◽  
pp. 9-15
Author(s):  
Yue Lin Gao ◽  
Fan Fan Lei

A multi-objective particle swarm optimization with dynamic crowding entropy-based diversity measure is proposed in this paper. Firstly, the elitist strategy is used in external archive in order to improve the convergence of this algorithm. Then the new diversity strategy called dynamic crowding entropy strategy and the global optimization update strategy are used to ensure sufficient diversity and uniform distribution amongst the solution of the non-dominated fronts. The results show that the proposed algorithm is able to find better spread of solutions with the better convergence to the Pareto front and preserve diversity of Pareto optimal solutions the more efficiently.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1334
Author(s):  
Mohamed R. Torkomany ◽  
Hassan Shokry Hassan ◽  
Amin Shoukry ◽  
Ahmed M. Abdelrazek ◽  
Mohamed Elkholy

The scarcity of water resources nowadays lays stress on researchers to develop strategies aiming at making the best benefit of the currently available resources. One of these strategies is ensuring that reliable and near-optimum designs of water distribution systems (WDSs) are achieved. Designing WDSs is a discrete combinatorial NP-hard optimization problem, and its complexity increases when more objectives are added. Among the many existing evolutionary algorithms, a new hybrid fast-convergent multi-objective particle swarm optimization (MOPSO) algorithm is developed to increase the convergence and diversity rates of the resulted non-dominated solutions in terms of network capital cost and reliability using a minimized computational budget. Several strategies are introduced to the developed algorithm, which are self-adaptive PSO parameters, regeneration-on-collision, adaptive population size, and using hypervolume quality for selecting repository members. A local search method is also coupled to both the original MOPSO algorithm and the newly developed one. Both algorithms are applied to medium and large benchmark problems. The results of the new algorithm coupled with the local search are superior to that of the original algorithm in terms of different performance metrics in the medium-sized network. In contrast, the new algorithm without the local search performed better in the large network.


Sign in / Sign up

Export Citation Format

Share Document