scholarly journals Multi-Objective Particle Swarm Optimization with Dynamic Crowding Entropy-Based Diversity Measure

2011 ◽  
Vol 1 ◽  
pp. 9-15
Author(s):  
Yue Lin Gao ◽  
Fan Fan Lei

A multi-objective particle swarm optimization with dynamic crowding entropy-based diversity measure is proposed in this paper. Firstly, the elitist strategy is used in external archive in order to improve the convergence of this algorithm. Then the new diversity strategy called dynamic crowding entropy strategy and the global optimization update strategy are used to ensure sufficient diversity and uniform distribution amongst the solution of the non-dominated fronts. The results show that the proposed algorithm is able to find better spread of solutions with the better convergence to the Pareto front and preserve diversity of Pareto optimal solutions the more efficiently.

Information ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 173 ◽  
Author(s):  
Xiang Yu ◽  
Claudio Estevez

Multiswarm comprehensive learning particle swarm optimization (MSCLPSO) is a multiobjective metaheuristic recently proposed by the authors. MSCLPSO uses multiple swarms of particles and externally stores elitists that are nondominated solutions found so far. MSCLPSO can approximate the true Pareto front in one single run; however, it requires a large number of generations to converge, because each swarm only optimizes the associated objective and does not learn from any search experience outside the swarm. In this paper, we propose an adaptive particle velocity update strategy for MSCLPSO to improve the search efficiency. Based on whether the elitists are indifferent or complex on each dimension, each particle adaptively determines whether to just learn from some particle in the same swarm, or additionally from the difference of some pair of elitists for the velocity update on that dimension, trying to achieve a tradeoff between optimizing the associated objective and exploring diverse regions of the Pareto set. Experimental results on various two-objective and three-objective benchmark optimization problems with different dimensional complexity characteristics demonstrate that the adaptive particle velocity update strategy improves the search performance of MSCLPSO significantly and is able to help MSCLPSO locate the true Pareto front more quickly and obtain better distributed nondominated solutions over the entire Pareto front.


2018 ◽  
Vol 232 ◽  
pp. 03039
Author(s):  
Taowei Chen ◽  
Yiming Yu ◽  
Kun Zhao

Particle swarm optimization(PSO) algorithm has been widely applied in solving multi-objective optimization problems(MOPs) since it was proposed. However, PSO algorithms updated the velocity of each particle using a single search strategy, which may be difficult to obtain approximate Pareto front for complex MOPs. In this paper, inspired by the theory of P system, a multi-objective particle swarm optimization (PSO) algorithm based on the framework of membrane system(PMOPSO) is proposed to solve MOPs. According to the hierarchical structure, objects and rules of P system, the PSO approach is used in elementary membranes to execute multiple search strategy. And non-dominated sorting and crowding distance is used in skin membrane for improving speed of convergence and maintaining population diversity by evolutionary rules. Compared with other multi-objective optimization algorithm including MOPSO, dMOPSO, SMPSO, MMOPSO, MOEA/D, SPEA2, PESA2, NSGAII on a benchmark series function, the experimental results indicate that the proposed algorithm is not only feasible and effective but also have a better convergence to true Pareto front.


Author(s):  
Diary R. Sulaiman

The progress of microelectronics making possible higher integration densities, and a considerable development of on-board systems are currently undergoing, this growth comes up against a limiting factor of power dissipation. Higher power dissipation will cause an immediate spread of generated heat which causes thermal problems. Consequently, the system's total consumed energy will increase as the system temperature increase. High temperatures in microprocessors and large thermal energy of computer systems produce huge problems of system confidence, performance, and cooling expenses. Power consumed by processors are mainly due to the increase in number of cores and the clock frequency, which is dissipated in the form of heat and causes thermal challenges for chip designers. As the microprocessor’s performance has increased remarkably in Nano-meter technology, power dissipation is becoming non-negligible. To solve this problem, this article addresses power dissipation reduction issues for high performance processors using multi-objective Pareto front (PF), and particle swarm optimization (PSO) algorithms to achieve power dissipation as a prior computation that reduces the real delay of a target microprocessor unit. Simulation is verified the conceptual fundamentals and optimization of joint body and supply voltages (Vth-VDD) which showing satisfactory findings.


Author(s):  
Rui Leng ◽  
Aijia Ouyang ◽  
Yanmin Liu ◽  
Lian Yuan ◽  
Zongyue Wu

In modern intelligent algorithms and real-industrial applications, there are many fields involving multi-objective particle swarm optimization algorithms, but the conflict between each objective in the optimization process will easily lead to the algorithm falling into local optimal. In order to prevent the algorithm from quickly falling into local optimization and improve the robustness of the algorithm, a multi-objective particle swarm optimization algorithm based on grid distance (GDMOPSO) was proposed, which has to improve the diversity of the algorithm and the search ability. Based on the MOPSO algorithm, a new external archive control strategy was established by using the grid technology and Pareto-dominant ordering principle, and the learning samples were improved. The proposed GDMOPSO is compared with a group of benchmark function tests and four classical algorithms. The results of experiment show that our proposed algorithm can effectively avoid premature convergence in terms of generational distance and hyper-volume (HV) indicator compared with other four classical MOPSO algorithms.


2019 ◽  
Vol 26 (9-10) ◽  
pp. 769-778
Author(s):  
Kai Yang ◽  
Kaiping Yu ◽  
Hui Wang

Modal parameters provide an insight into the dynamical properties of structures. In the time–frequency domain–based methods, time–frequency ridges contain crucial information on the characteristics of multicomponent signals, and manually extracting time–frequency ridges is a huge burden, especially when long-time time-varying modal parameters are focused on. In this study, time–frequency ridge extraction is converted into a multi-objective optimization problem, and a new hybrid method of multi-objective particle swarm optimization and k-means clustering is proposed to solve such a multi-objective optimization problem. In the hybrid method, the particle swarm is partitioned into sub-swarms by k-means clustering, and the sub-swarms are used to search new solutions for updating a finite-sized external archive, which is used as the exclusive centroids of the k-means clustering. Simultaneously, the finite-sized external archive serves as global best positions of sub-swarms. Both simulated and experimental cases are applied to validate the hybrid method. With the aid of the hybrid method, the influence of varying temperatures on modal parameters of a column beam is experimentally analyzed in detail.


Sign in / Sign up

Export Citation Format

Share Document