scholarly journals GPON and V-band mmWave in green backhaul solution for 5G ultra-dense network

Author(s):  
Ayodeji Akeem Ajani ◽  
Vitalice Kalecha Oduol ◽  
Zachaeus Kayode Adeyemo

Ultra-dense network (UDN) is characterized by massive deployment of small cells which resulted into complex backhauling of the cells. This implies that for 5G UDN to be energy efficient, appropriate backhauling solutions must be provided. In this paper, we have evaluated the performance of giga passive optical network (GPON) and V-band millimetre wave (mmWave) in serving as green backhaul solution for 5G UDN. The approach was to first reproduce existing backhaul solutions in Very Dense Network (VDN) scenario which served as benchmark for the performance evaluation for the UDN scenario. The best two solutions, GPON and V-band solutions from the VDN were then deployed in 5G UDN scenario. The research was done by simulation in MATLAB. The performance metrics used were power consumption and energy efficiency against the normalized hourly traffic profile. The result revealed that GPON and V-band mmWave outperformed other solutions in VDN scenario. However, this performance significantly dropped in the UDN scenariodue to higher data traffic requirement of UDN compared to VDN. Thus, it can be concluded that GPON and V-band mmWave are not best suited to serve as green backhaul solution for 5G UDN necessitating further investigation of other available backhaul technologies.

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Yan Wang ◽  
Shangya Han ◽  
Panke Qin ◽  
Yaping Li ◽  
Yanmei Shen

AbstractFor the effective bearer of P2P-type services, a P2P service bearer reorientation method for passive optical network for long-distance wide access based on P2P protocol message and wire-speed message identification is proposed. However, the reorientation method still has the possibility of relocation failure, so it is modified – that is, an improved P2P service bearer reorientation method based on optical line terminal (OLT) and optical network unit (ONU) cooperation. And the tool NS2 is used for network simulation analysis. Through simulation analysis, it is verified that the modified reorientation method improves the data traffic burden at the core network and at the OLT.


Author(s):  
Huda Saleh Abbas ◽  
Mark A Gregory

Passive optical network (PON) technologies have received increasing attention as demand for fibre access networks has grown. Enhancing fibre access network reliability provides lower operational costs, and improves customer satisfaction. This paper discusses PON survivability including protection schemes for the fiber link and the Optical Line Terminal (OLT), the exciting monitoring techniques of the fiber link, and the effect of reducing the restoration time on the network availability. The main contribution of this study is to provide two protection schemes namely OLT-only-protected and OLT-and-ring protected. The proposed schemes are designed to handle instances of single failure affecting all customers in the network. This work considers three key performance metrics- Failure Impact Robustness (FIR), cost, and availability. The objective of the proposed protection architectures is to guarantee high quality of service at low costs by protecting critical network elements such as OLT and fiber ring. The proposed architectures have been compared with other well-known protection schemes. The results postulate that OLT-and-ring protected approach has 99.993% availability with a 0.09% increase in cost compared to the ring-only protection architecture.


Author(s):  
Ayodeji A. Ajani ◽  
◽  
Vitalice K. Oduol ◽  
Zachaeus K. Adeyemo ◽  
Ebude C. Awasume

5G Ultra-Dense Networks (UDNs) will involve massive deployment of small cells which in turn form complex backhaul network. This backhaul network must be energy efficient for the 5G UDN network to be green. V-band and E-band mmWave technologies are among the wireless backhaul solutions tipped for 5G UDN. In this paper, we have compared the performance of the two backhaul solutions to determine which is more energy efficient for 5G UDN. We first formulated the problem to minimize power, then proposed an algorithm to solve the problem. This was then simulated using Network simulator 3.The first scenario made use of V-band mmWave while thesecond was E-band mmWave. The performance metricsused were power consumption and energy efficiency againstthe normalized hourly traffic profile. The performances ofthe two solutions were compared. The results revealed thatE-band mmWave outperformed V-band mmWave inbackhauling traffic in 5G UDN. It can be concluded that E-band green backhaul solution is recommended over V-bandmmWave for 5G UDN.


Sign in / Sign up

Export Citation Format

Share Document