scholarly journals COMPUTATIONALLY EFFICIENT PATH PLANNING ALGORITHM FOR AUTONOMOUS VEHICLE

2020 ◽  
Vol 83 (1) ◽  
pp. 133-143
Author(s):  
Sanjoy Kumar Debnath ◽  
Rosli Omar ◽  
Nor Badariyah Abdul Latip ◽  
Susama Bagchi ◽  
Elia Nadira Sabudin ◽  
...  

This paper analyses an experimental path planning performance between the Iterative Equilateral Space Oriented Visibility Graph (IESOVG) and conventional Visibility Graph (VG) algorithms in terms of computation time and path length for an autonomous vehicle. IESOVG is a path planning algorithm that was proposed to overcome the limitations of VG which is slow in obstacle-rich environment. The performance assessment was done in several identical scenarios through simulation. The results showed that the proposed IESOVG algorithm was much faster in comparison to VG. In terms of path length, IESOVG was found to have almost similar performance with VG.  It was also found that IESOVG was complete as it could find a collision-free path in all scenarios.

Author(s):  
Elia Nadira Sabudin ◽  
Rosli Omar ◽  
Sanjoy Kumar Debnath ◽  
Muhammad Suhaimi Sulong

<span lang="EN-US">Path planning is crucial for a robot to be able to reach a target point safely to accomplish a given mission. In path planning, three essential criteria have to be considered namely path length, computational complexity and completeness. Among established path planning methods are voronoi diagram (VD), cell decomposition (CD), probability roadmap (PRM), visibility graph (VG) and potential field (PF). The above-mentioned methods could not fulfill all three criteria simultaneously which limits their application in optimal and real-time path planning. This paper proposes a path PF-based planning algorithm called dynamic artificial PF (DAPF). The proposed algorithm is capable of eliminating the local minima that frequently occurs in the conventional PF while fulfilling the criterion of path planning. DAPF also integrates path pruning to shorten the planned path. In order to evaluate its performance, DAPF has been simulated and compared with VG in terms of path length and computational complexity. It is found that DAPF is consistent in generating paths with low computation time in obstacle-rich environments compared to VG. The paths produced also are nearly optimal with respect to VG.</span>


Author(s):  
Nurul Saliha Amani Ibrahim ◽  
Faiz Asraf Saparudin

The path planning problem has been a crucial topic to be solved in autonomous vehicles. Path planning consists operations to find the route that passes through all of the points of interest in a given area. Several algorithms have been proposed and outlined in the various literature for the path planning of autonomous vehicle especially for unmanned aerial vehicles (UAV). The algorithms are not guaranteed to give full performance in each path planning cases but each one of them has their own specification which makes them suitable in sophisticated situation. This review paper evaluates several possible different path planning approaches of UAVs in terms optimal path, probabilistic completeness and computation time along with their application in specific problems.


Author(s):  
Amr Mohamed ◽  
Moustafa El-Gindy ◽  
Jing Ren ◽  
Haoxiang Lang

This paper presents an optimal collision-free path planning algorithm of an autonomous multi-wheeled combat vehicle using optimal control theory and artificial potential field function (APF). The optimal path of the autonomous vehicle between a given starting and goal points is generated by an optimal path planning algorithm. The cost function of the path planning is solved together with vehicle dynamics equations to satisfy the vehicle dynamics constraints and the boundary conditions. For this purpose, a simplified four-axle bicycle model of the actual vehicle considering the vehicle body lateral and yaw dynamics while neglecting roll dynamics is used. The obstacle avoidance technique is mathematically modeled based on the proposed sigmoid function as the artificial potential field method. This potential function is assigned to each obstacle as a repulsive potential field. The inclusion of these potential fields results in a new APF which controls the steering angle of the autonomous vehicle to reach the goal point. A full nonlinear multi-wheeled combat vehicle model in TruckSim software is used for validation. This is done by importing the generated optimal path data from the introduced optimal path planning MATLAB algorithm and comparing lateral acceleration, yaw rate and curvature at different speeds (9 km/h, 28 km/h) for both simplified and TruckSim vehicle model. The simulation results show that the obtained optimal path for the autonomous multi-wheeled combat vehicle satisfies all vehicle dynamics constraints and successfully validated with TruckSim vehicle model.


2013 ◽  
Vol 46 (10) ◽  
pp. 36-41 ◽  
Author(s):  
Junsoo Kim ◽  
Kichun Jo ◽  
Dongchul Kim ◽  
Keonyup Chu ◽  
Myoungho Sunwoo

2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740091 ◽  
Author(s):  
Taizhi Lv ◽  
Maoyan Feng

Path planning is an essential and inevitable problem in robotics. Trapping in local minima and discontinuities often exist in local path planning. To overcome these drawbacks, this paper presents a smooth path planning algorithm based on modified visibility graph. This algorithm consists of three steps: (1) polygons are generated from detected obstacles; (2) a collision-free path is found by simultaneous visibility graph construction and path search by A[Formula: see text] (SVGA); (3) the path is smoothed by B-spline curves and particle swarm optimization (PSO). Simulation experiment results show the effectiveness of this algorithm, and a smooth path can be found fleetly.


2021 ◽  
Vol 64 (5) ◽  
pp. 1459-1474
Author(s):  
Azlan Zahid ◽  
Long He ◽  
Daeun Choi ◽  
James Schupp ◽  
Paul Heinemann

HighlightsA branch accessibility simulation was performed for robotic pruning of apple trees.A virtual tree environment was established using a kinematic manipulator model and an obstacle model.Rapidly-exploring random tree (RRT) was combined with smoothing and optimization for improved path planning.Effects on RRT path planning of the approach angle of the end-effector and cutter orientation at the target were studied.Abstract. Robotic pruning is a potential solution to reduce orchard labor and associated costs. Collision-free path planning of the manipulator is essential for successful robotic pruning. This simulation study investigated the collision-free branch accessibility of a six rotational (6R) degrees of freedom (DoF) robotic manipulator with a shear cutter end-effector. A virtual environment with a simplified tall spindle tree canopy was established in MATLAB. An obstacle-avoidance algorithm, rapidly-exploring random tree (RRT), was implemented for establishing collision-free paths to reach the target pruning points. In addition, path smoothing and optimization algorithms were used to reduce the path length and calculate the optimized path. Two series of simulations were conducted: (1) performance and comparison of the RRT algorithm with and without smoothing and optimization, and (2) performance of collision-free path planning considering different approach poses of the end-effector relative to the target branch. The simulations showed that the RRT algorithm successfully avoided obstacles and allowed the manipulator to reach the target point with 23 s average path finding time. The RRT path length was reduced by about 28% with smoothing and by 25% with optimization. The RRT smoothing algorithm generated the shortest path lengths but required about 1 to 3 s of additional computation time. The lowest coefficient of variation and standard deviation values were found for the optimization method, which confirmed the repeatability of the method. Considering the different end-effector approach poses, the simulations suggested that successfully finding a collision-free path was possible for branches with no existing path using the ideal (perpendicular cutter) approach pose. This study provides a foundation for future work on the development of robotic pruning systems. Keywords: Agricultural robotics, Collision-free path, Manipulator, Path planning, Robotic pruning, Virtual tree environment.


Sign in / Sign up

Export Citation Format

Share Document