Node Cooperation to Avoid Early Congestion Detection Based on Cross-Layer for Wireless Ad Hoc Networks

Author(s):  
Abdalrazak Tareq Rahem ◽  
Mahamod Ismail ◽  
Nor Fadzilah Abdullah ◽  
Mohammed Balfaqih

<p><span>The resent application of wireless ad hoc networks (WANET) demands a high and reliable data load. The simultaneous transfer of large amounts of data different nearby sources to nearby destinations in a massive network under these circumstances results in the possibility of network congestion. Congestion is an extremely unwanted condition because it creates extra overhead to the already deeply loaded environment, which ultimately leads to resource exhaustion, and can lead to packet drops and retransmission at either the MAC or upper layers. We present a lightweight congestion control and early avoidance congestion control scheme, which can effective control congestion while keeping overhead to a minimum. This scheme is based on the Cross-layer between the MAC and network layers lead to early detection of congestion. With the help of node cooperation the sender node is triggered to find an alternative route based on TMT. This mechanism controls the network resources rather than the data traffic. Detailed performance results show enhancement in the throughput and packet delivery ratio, as well as a reduction in packet drop. Generally, network performance increases.</span></p>

Author(s):  
Abdalrazak Tareq Rahem ◽  
Mahamod Ismail ◽  
Nor Fadzilah Abdullah ◽  
Mohammed Balfaqih

<p><span>The resent application of wireless ad hoc networks (WANET) demands a high and reliable data load. The simultaneous transfer of large amounts of data different nearby sources to nearby destinations in a massive network under these circumstances results in the possibility of network congestion. Congestion is an extremely unwanted condition because it creates extra overhead to the already deeply loaded environment, which ultimately leads to resource exhaustion, and can lead to packet drops and retransmission at either the MAC or upper layers. We present a lightweight congestion control and early avoidance congestion control scheme, which can effective control congestion while keeping overhead to a minimum. This scheme is based on the Cross-layer between the MAC and network layers lead to early detection of congestion. With the help of node cooperation the sender node is triggered to find an alternative route based on TMT. This mechanism controls the network resources rather than the data traffic. Detailed performance results show enhancement in the throughput and packet delivery ratio, as well as a reduction in packet drop. Generally, network performance increases.</span></p>


2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Hong-Chuan Yang ◽  
Kui Wu ◽  
Wu-Sheng Lu

We study the energy-efficient configuration of multihop paths with automatic repeat request (ARQ) mechanism in wireless ad hoc networks. We adopt a cross-layer design approach and take both the quality of each radio hop and the battery capacity of each transmitting node into consideration. Under certain constraints on the maximum tolerable transmission delay and the required packet delivery ratio, we solve optimization problems to jointly schedule the transmitting power of each transmitting node and the retransmission limit over each hop. Numerical results demonstrate that the path configuration methods can either significantly reduce the average energy consumption per packet delivery or considerably extend the average lifetime of the multihop route.


2013 ◽  
Vol 9 (3) ◽  
pp. 170 ◽  
Author(s):  
Nyoman Gunantara ◽  
Gamantyo Hendrantoro

This paper focuses in the selection of an optimal path pair for cooperative diversity based on cross-layer optimization in multihop wireless ad hoc networks. Cross-layer performance indicators, including power consumption, signal-to-noise ratio, and load variance are optimized using multi-objective optimization (MOO) with Pareto method. Consequently, optimization can be performed simultaneously to obtain a compromise among three resources over all possible path pairs. The Pareto method is further compared to the scalarization method in achieving fairness to each resource. We examine the statistics of power consumption, SNR, and load variance for both methods through simulations. In addition, the complexity of the optimization of both methods is evaluated based on the required computing time.


Sign in / Sign up

Export Citation Format

Share Document