Fibonary Spray and Wait Routing in Delay Tolerant Networks

Author(s):  
Priyanka Das ◽  
Prosenjit Chowdhury ◽  
Bikash Poudel ◽  
Tanmay De

<p>Although there has been a tremendous rise in places being connected through the Internet or any other network protocol, there still lie areas, which remain out of reach due to various reasons. For all such places the answer is a Delay Tolerant Network (DTN). A DTN is such a network where there is no fixed or predefined route for messages and no such guarantee whatsoever of all messages being correctly routed. DTN can be considered as a superset of networks wherein other networks such as adhoc, mobile, vehicular etc. form the subset. Therefore routing in DTN is a very chancy affair where one has to maximize on the present network scenarios to get any fruitful result other than depending on past information. Also protocols here need to be less complex and not increase the already high nodal overhead. In this paper we propose a new approach, the Fibonary Spray and Wait, which does exactly this. It forwards copies of a message in a modified Binary Spray and Wait manner so that it performs well even in non independent and identically distributed node structure. We have supported our statements with mathematical as well as simulation analysis.</p>

Author(s):  
Priyanka Das ◽  
Prosenjit Chowdhury ◽  
Bikash Poudel ◽  
Tanmay De

<p>Although there has been a tremendous rise in places being connected through the Internet or any other network protocol, there still lie areas, which remain out of reach due to various reasons. For all such places the answer is a Delay Tolerant Network (DTN). A DTN is such a network where there is no fixed or predefined route for messages and no such guarantee whatsoever of all messages being correctly routed. DTN can be considered as a superset of networks wherein other networks such as adhoc, mobile, vehicular etc. form the subset. Therefore routing in DTN is a very chancy affair where one has to maximize on the present network scenarios to get any fruitful result other than depending on past information. Also protocols here need to be less complex and not increase the already high nodal overhead. In this paper we propose a new approach, the Fibonary Spray and Wait, which does exactly this. It forwards copies of a message in a modified Binary Spray and Wait manner so that it performs well even in non independent and identically distributed node structure. We have supported our statements with mathematical as well as simulation analysis.</p>


Author(s):  
Vandana Kushwaha ◽  
Ratneshwer Gupta

Opportunistic networks are one of the emerging evolutions of the network system. In opportunistic networks, nodes are able to communicate with each other even if the route between source to destination does not already exist. Opportunistic networks have to be delay tolerant in nature (i.e., able to tolerate larger delays). Delay tolerant network (DTNs) uses the concept of “store-carry-forward” of data packets. DTNs are able to transfer data or establish communication in remote area or crisis environment where there is no network established. DTNs have many applications like to provide low-cost internet provision in remote areas, in vehicular networks, noise monitoring, extreme terrestrial environments, etc. It is therefore very promising to identify aspects for integration and inculcation of opportunistic network methodologies and technologies into delay tolerant networking. In this chapter, the authors emphasize delay tolerant networks by considering its architectural, routing, congestion, and security issues.


Author(s):  
Anamika Chauhan ◽  
Kapil Sharma ◽  
Alka Aggarwal

With the ever-escalating amount of vehicular traffic activity on the roads, the efficient management of traffic and safety of the drivers and passengers is of paramount gravity. Vehicular ad-hoc networks (VANETs) have emerged as the systems where vehicles would be perceptive of the locality and can supply the driver with required inputs to take necessary actions to alleviate the various issues. The system is designed to detect and identify essential traffic events and inform all concerned entities and take appropriate action. The characteristics of VANET are the topology is highly mobile, depends on city infrastructure, and the high speed of vehicles. These challenges result in frequent disruption of connections, long delays in delivering the messages. The challenges are overcome through the vehicular delay-tolerant network (VDTN) routing protocols are used that can facilitate communication under these network challenges. In this chapter, the authors evaluate the effect of the node density and message sizes on the performance of the various VDTN routing protocols.


Sign in / Sign up

Export Citation Format

Share Document