Delay Tolerant Networks

Author(s):  
Vandana Kushwaha ◽  
Ratneshwer Gupta

Opportunistic networks are one of the emerging evolutions of the network system. In opportunistic networks, nodes are able to communicate with each other even if the route between source to destination does not already exist. Opportunistic networks have to be delay tolerant in nature (i.e., able to tolerate larger delays). Delay tolerant network (DTNs) uses the concept of “store-carry-forward” of data packets. DTNs are able to transfer data or establish communication in remote area or crisis environment where there is no network established. DTNs have many applications like to provide low-cost internet provision in remote areas, in vehicular networks, noise monitoring, extreme terrestrial environments, etc. It is therefore very promising to identify aspects for integration and inculcation of opportunistic network methodologies and technologies into delay tolerant networking. In this chapter, the authors emphasize delay tolerant networks by considering its architectural, routing, congestion, and security issues.

Author(s):  
Kun-Chan Lan

A Delay Tolerant Network (DTN) is one type of challenged network where network contacts are intermittent or link performance is highly variable or extreme. In such a network, a complete path does not exist from source to destination for most of the time. In addition, the path can be highly unstable and may change or break unexpectedly. To make communication possible in a delay tolerant network, the intermediate nodes need to take custody of data during the blackout and forward it toward the destination when the connectivity resumes. A vehicular network nicely falls into the context of DTN since the mobility of vehicles constantly causes the disruption of link connectivity’s between vehicles. In this chapter, the authors discuss some research challenges and issues which might occur in a Delay Tolerant Network and how they are related to vehicular networks.


2017 ◽  
Vol 67 (3) ◽  
pp. 282 ◽  
Author(s):  
Monica Ravishankar ◽  
D. Vijay Rao ◽  
C.R.S. Kumar

<p>Cyberspace plays a prominent role in our social, economic and civic welfare and cyber security issues are of paramount importance today. Growing reliance of the intertwined military and civilian applications on wireless computer networks makes these networks highly vulnerable to attacks of which jamming attacks are a vital and exigent problem. In this paper, we study defence against jamming attacks as game in a delay tolerant network, with two adversarial players: the jammer playing against the transmitter. The transmitters seek to choose an optimal time to schedule his transmission securely, so as to maximize the probability of successful delivery before his session expires, while these transmissions are subject to inference from the jammer, who attempts to minimize this probability . We design strategies for the transmitters that offset transmission period based inference of network traffic by the jammer. We model these interactions and decisions as a game and use simulation as a tool to evaluate the games. Probability distribution functions over finite set of strategies are proposed to compute the expected payoff of both the players. Simulation results are used to evaluate the expected payoff along with the resulting equilibrium in cases where players are biased and unbiased. These results are used to strategically decide on the optimal time for both the players, and evaluate the efficiency of the strategies used by the transmitters against jammer attacks. </p>


2012 ◽  
Vol 4 ◽  
pp. 13-18
Author(s):  
Qi Lie Liu ◽  
Guang De Li ◽  
Yun Li ◽  
Ying Jun Pan ◽  
Feng Zhi Yu

Opportunistic Networks (ONs) are the newly emerging type of Delay Tolerant Network (DTN) systems that opportunistically exploit unpredicted contacts among nodes to share information. As with all DTN environments ONs experience frequent and large delays, and an end-to-end path may only exist for a brief and unpredictable time. In this paper, we employ optimal theory to propose a novel buffer management strategy named Optimal Buffer Scheduling Policy (OBSP) to optimize the sequence of message forwarding and message discarding. In OBSP, global optimization considering delivery ratio, transmission delay, and overhead is adopted to improve the overall performance of routing algorithms. The simulation results show that the OBSP is much better than the existing ones.


2011 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Bruno M. C. Silva ◽  
Vasco N. G. J. Soares ◽  
Joel J. P. C. Rodrigues

Vehicular delay-tolerant networks (VDTNs) are opportunistic networks that enable connectivity in challenged scenarios with unstable links where end-to-end communications may not exist. VDTN architecture handles non-real timeapplications using vehicles to relay messages between network nodes. To address the problem of intermittent connectivity, network nodes store messages on their buffers, carrying them through the network while waiting for transfer opportunities. The storage capacity of the nodes affects directly the network performance. Therefore, it is important to incorporate suitable network protocols using self-contained messages to improve communication that supports store-carry-and-forward operation procedures. Clearly, such procedures motivate content cachingand retrieval. This paper surveys the state-of-the art on intelligent caching and retrieval mechanisms focusing on ad-hoc and delay tolerant networks (DTN). These approaches can offer important insights for upcoming proposals on intelligent caching and retrieval mechanisms for VDTNs.


Author(s):  
Anamika Chauhan ◽  
Kapil Sharma ◽  
Alka Aggarwal

With the ever-escalating amount of vehicular traffic activity on the roads, the efficient management of traffic and safety of the drivers and passengers is of paramount gravity. Vehicular ad-hoc networks (VANETs) have emerged as the systems where vehicles would be perceptive of the locality and can supply the driver with required inputs to take necessary actions to alleviate the various issues. The system is designed to detect and identify essential traffic events and inform all concerned entities and take appropriate action. The characteristics of VANET are the topology is highly mobile, depends on city infrastructure, and the high speed of vehicles. These challenges result in frequent disruption of connections, long delays in delivering the messages. The challenges are overcome through the vehicular delay-tolerant network (VDTN) routing protocols are used that can facilitate communication under these network challenges. In this chapter, the authors evaluate the effect of the node density and message sizes on the performance of the various VDTN routing protocols.


Author(s):  
Eranda Harshanath Jayatunga ◽  
Pasika Sashmal Ranaweera ◽  
Indika Anuradha Mendis Balapuwaduge

The internet of things (IoT) is paving a path for connecting a plethora of smart devices together that emerges from the novel 5G-based applications. This evident heterogeneity invites the integration of diverse technologies such as wireless sensor networks (WSNs), software-defined networks (SDNs), cognitive radio networks (CRNs), delay tolerant networks (DTNs), and opportunistic networks (oppnets). However, the security and privacy are prominent conundrums due to featured compatibility and interoperability aspects of evolving directives. Blockchain is the most nascent paradigm instituted to resolve the issues of security and privacy while retaining performance standards. In this chapter, advances of blockchain technology in aforesaid networks are investigated and presented as means to be followed as security practices for pragmatically realizing the concepts.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Youngho Park ◽  
Chul Sur ◽  
Kyung-Hyune Rhee

One remarkable feature of vehicular ad hoc networks is characterized by an opportunistic communications by means of store-carry-forward message relaying which requires the cooperation of vehicles on the networks. However, we cannot be sure that all vehicles willingly contribute their computing resources to the networks for message forwarding with no rewards for their efforts in real-world scenarios. In addition, unfortunately, there may exist some selfish and greedy node which may not help others but tend to take their own gain. To cope with this challenge, incentive mechanisms are generally considered as the promising solution. In this paper, we design a Bitcoin-based secure and reliable incentive scheme for cooperative vehicular delay tolerant networking services. Bitcoin is the well-known worldwide cryptocurrency and digital payment system whose implementation relies on cryptographic techniques, which makes it possible to develop a practical credit-based incentive scheme on the vehicular networks at a low cost. We also implement Bitcoin transaction scripts to handle our proposed incentive scheme.


Delay Tolerant Networks finds its application in variety of environments and addresses issues like intermittent connection, long and variable delays and high latency. Vehicular Delay Tolerant Networks was introduced due to its various characteristic matches with DTNs. In particular class of VDTN there are two types of nodes: Stationary and Mobile nodes. Stationary nodes are deployed along the roadside and mobile nodes are constrained to move over the roads with variable speeds. This letter presents a new routing algorithm based on Ant Colony Optimization in Vehicular Delay Tolerant Network. We performed extensive simulation in ONE simulator and compare with Probabilistic Bundle Relaying Scheme to gauge the benefits of Ant Colony Optimization based scheme over Probabilistic Bundle Relaying scheme.


2021 ◽  
Author(s):  
Hongsheng Chen ◽  
Chunhui Wu

Abstract In predictable delay tolerant networks (PDTNs), the network topology is known a priori or can be predicted over time such as space planet networks and vehicular networks based on public buses or trains. Due to the intermittent connectivity, network partitioning, and long delays in PDTNs, most of the researchers mainly focuses on routing and data access research. However, topology control can improve energy effectiveness and increase the communication capacity, thus how to maintain the dynamic topology of PDTNs becomes crucial. In this paper, a contact ability based topology control method for PDTNs is proposed. First, the contact ability is calculated using our contact ability calculation model, and then the PDTNs is modeled as an undirected weighted contact graph which includes spatial and contact ability information. The topology control problem is defined as constructing a Minimum Spanning Tree(MST) that the contact ability of the MST is maximized. We propose two algorithms based on undirected weighted contact graph to solve the defined problem, and compare them with the latest method in terms of energy cost and contact ability. Extensive simulation experiments demonstrate that the proposed algorithms can guarantee data transmission effectively, and reduce the network energy consumption significantly.


Sign in / Sign up

Export Citation Format

Share Document