scholarly journals Optimal Charging Schedule Coordination of Electric Vehicles in Smart Grid

Author(s):  
Wan Iqmal Faezy Wan Zalnidzam ◽  
Hasmaini Mohamad ◽  
Nur Ashida Salim ◽  
Hazlie Mokhlis ◽  
Zuhaila Mat Yasin

The increasing penetration of electric vehicle (EV) at distribution system is expected in the near future leading to rising demand for power consumption. Large scale uncoordinated charging demand of EVs will eventually threatens the safety operation of the distribution network. Therefore, a charging strategy is needed to reduce the impact of charging. This paper proposes an optimal centralized charging schedule coordination of EV to minimize active power losses while maintaining the voltage profile at the demand side. The performance of the schedule algorithm developed using particle swarm optimization (PSO) technique is evaluated at the IEEE-33 Bus radial distribution system in a set time frame of charging period. Coordinated and uncoordinated charging schedule is then compared in terms of active power losses and voltage profile at different level of EV penetration considering 24 hours of load demand profile. Results show that the proposed coordinated charging schedule is able to achieve minimum total active power losses compared to the uncoordinated charging.

Author(s):  
Souhil Mouassa ◽  
Tarek Bouktir

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.


Author(s):  
Shah Mohazzem Hossain ◽  
Abdul Hasib Chowdhury

<span lang="EN-US">Large amount of active power losses and low voltage profile are the two major issues concerning the integration of distributed generations with existing power system networks. High </span><em><span lang="EN-US">R</span></em><span lang="EN-US">/</span><em><span lang="EN-US">X</span></em><span lang="EN-US"> ratio and long distance of radial network further aggravates the issues. Optimal placement of distributed generators can address these issues significantly by alleviating active power losses and ameliorating voltage profile in a cost effective manner. In this research, multi-objective optimal placement problem is decomposed into minimization of total active power losses, maximization of bus voltage profile enhancement and minimization of total generation cost of a power system network for static and dynamic load characteristics. Optimum utilization factor for installed generators and available loads is scaled by the analysis of yearly load-demand curve of a network. The developed algorithm of N-bus system is implemented in IEEE-14 bus standard test system to demonstrate the efficacy of the proposed method in different loading conditions.</span>


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sanjay Jain ◽  
Ganga Agnihotri ◽  
Shilpa Kalambe ◽  
Renuka Kamdar

This paper intends to enumerate the impact of distributed generation (DG) on distribution system in terms of active as well as reactive power loss reduction and improved voltage stability. The novelty of the method proposed in this paper is the simple and effective way of sizing and siting of DG in a distribution system by using two-port Z-bus parameters. The validity of the method is verified by comparing the results with already published methods. Comparative study presented has shown that the proposed method leads existing methods in terms of its simplicity, undemanding calculation procedures, and less computational efforts and so does the time. The method is implemented on IEEE 69-bus test radial distribution system and results show significant reduction in distribution power losses with improved voltage profile of the system. Simulation is carried out in MATLAB environment for execution of the proposed algorithm.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Claudio Goncalves ◽  
J. Paulo A. Vieira ◽  
Dione J. A. Vieira ◽  
M. Emilia L. Tostes ◽  
Bernard C. Bernardes ◽  
...  

This paper proposes an analytical methodology to allocate and size active power photovoltaic generation (PVG) units with embedded DC/AC inverter (PVGI) to be integrated as concentrated or dispersed generation in isolated medium voltage electrical grids. The methodology considers multiple objectives: improving the electrical grid voltage profile; reducing active power losses and the diesel generation participation. To validate the proposed methodology, the IEEE 33 and 69 buses networks and an isolated real electrical system were simulated. The results obtained demonstrated that the proposed methodology is effective in providing a solution with improvement in voltage profile, active power losses reduction, diesel generation participation reduction.


2021 ◽  
Vol 13 (18) ◽  
pp. 10224
Author(s):  
Sasan Azad ◽  
Mohammad Mehdi Amiri ◽  
Morteza Nazari Heris ◽  
Ali Mosallanejad ◽  
Mohammad Taghi Ameli

Considering the strong influence of distributed generation (DG) in electric distribution systems and its impact on network voltage losses and stability, a new challenge has appeared for such systems. In this study, a novel analytical algorithm is proposed to distinguish the optimal location and size of DGs in radial distribution networks based on a new combined index (CI) to reduce active power losses and improve system voltage profiles. To obtain the CI, active power losses and voltage stability indexes were used in the proposed approach. The CI index with sensitivity analysis was effective in decreasing power losses and improving voltage stability. Optimal DG size was determined based on a search algorithm to reduce active power losses. The considered scheme was examined through IEEE 12-bus and 33-bus radial distribution test systems (RDTS), and the obtained results were compared and validated in comparison with other available methods. The results and analysis verified the effectiveness of the proposed algorithm in reducing power losses and improving the distribution system voltage profiles by determining the appropriate location and optimal DG size. In IEEE 12 and 33 bus networks, the minimum voltage increased from 0.9434 p.u and 0.9039 p.u to 0.9907 p.u and 0.9402 p.u, respectively. Additionally, the annual cost of energy losses decreased by 78.23% and 64.37%, respectively.


2014 ◽  
Vol 53 ◽  
pp. 70-85 ◽  
Author(s):  
Hossein Farahmand ◽  
Leif Warland ◽  
Daniel Huertas-Hernando

Sign in / Sign up

Export Citation Format

Share Document