scholarly journals A Radio Signal Strength Based Localization Error Optimization Technique for Wireless Sensor Network

Author(s):  
Sudha H. Thimmaiah ◽  
Mahadevan G

Wireless Sensor Networks (WSN) is useful in collecting data from various sensor devices that are distributed over a network which is generally positioned in a stationary manner. Wireless sensor based communication system is an ever growing sector in the industry of communication. Wireless infrastructure is a network that enables correspondence between various devices associated through an infrastructure protocol. Finding the position or location of sensor node (Localization) is an important factor in sensor network for proving efficient service to end user. The existing technique proposed so for adopt AOA (Angle of Arrival), TOA (Time of Arrival) etc… suffers in estimating the likelihood of localization error and induces high cost of deployment. To cater this in this work the author proposes a cost effective RSS (Received signal strength) based localization technique and also proposes an adaptive information estimation to reduce or approximate the localization error in wireless sensor network. The author compares our proposed localization model with existing protocol and analyse its efficiency.

Location estimation in Wireless Sensor Network (WSN) is mandatory to achieve high network efficiency. Identifying the positions of sensors is an uphill task as monitoring nodes are involved in estimation and localization. Clustered Positioning for Indoor Environment (CPIE) is proposed for estimating the position of the sensors using a Cluster Head (CH) based mechanism. The CH estimates the number of neighbor nodes in each floor of the indoor environment. It sends the requests to the cluster members and the positions are estimated based on the Received Signal Strength Indicators (RSSIs) from the members of the cluster. The performance of the proposed scheme is analyzed for both stable and mobile conditions by varying the number of floors. Experimental results show that the propounded scheme offers better network efficiency and reduces delay and localization error


Author(s):  
Sudha H. Thimmaiah ◽  
Mahadevan G

<p>Wireless sensor network (WSN) is composed of low cost, tiny sensor that communicates with each other and transmit sensory data to its base station/sink. The sensor network has been adopted by various industries and organization for their ease of use and is considered to be the most sorted future paradigm. The sensor devices are remotely deployed and powered by batteries. Preserving the energy of sensor devices is most desired. To preserve the battery efficient routing technique is needed. Most routing technique required prior knowledge of sensor nodes location in order to provide energy efficiency. Many existing technique have been proposed in recent time to determine the position of sensor nodes. The existing technique proposed so for suffers in estimating the likelihood of localization error. Reducing the error in localization is most desired. This work present a (Time-of-Arrival) based localization technique and also present adaptive information estimation model to reduce/approximate the localization error in wireless sensor network. The author compares our proposed localization model with existing protocol and analyses its efficiency.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Iram Javed ◽  
Xianlun Tang ◽  
Kamran Shaukat ◽  
Muhammed Umer Sarwar ◽  
Talha Mahboob Alam ◽  
...  

In a wireless sensor network (WSN), node localization is a key requirement for many applications. The concept of mobile anchor-based localization is not a new concept; however, the localization of mobile anchor nodes gains much attention with the advancement in the Internet of Things (IoT) and electronic industry. In this paper, we present a range-free localization algorithm for sensors in a three-dimensional (3D) wireless sensor networks based on flying anchors. The nature of the algorithm is also suitable for vehicle localization as we are using the setup much similar to vehicle-to-infrastructure- (V2I-) based positioning algorithm. A multilayer C-shaped trajectory is chosen for the random walk of mobile anchor nodes equipped with a Global Positioning System (GPS) and broadcasts its location information over the sensing space. The mobile anchor nodes keep transmitting the beacon along with their position information to unknown nodes and select three further anchor nodes to form a triangle. The distance is then computed by the link quality induction against each anchor node that uses the centroid-based formula to compute the localization error. The simulation shows that the average localization error of our proposed system is 1.4 m with a standard deviation of 1.21 m. The geometrical computation of localization eliminated the use of extra hardware that avoids any direct communication between the sensors and is applicable for all types of network topologies.


Author(s):  
Hemavathi P ◽  
Nandakumar A. N.

Clustering is one of the operations in the wireless sensor network that offers both streamlined data routing services as well as energy efficiency. In this viewpoint, Particle Swarm Optimization (PSO) has already proved its effectiveness in enhancing clustering operation, energy efficiency, etc. However, PSO also suffers from a higher degree of iteration and computational complexity when it comes to solving complex problems, e.g., allocating transmittance energy to the cluster head in a dynamic network. Therefore, we present a novel, simple, and yet a cost-effective method that performs enhancement of the conventional PSO approach for minimizing the iterative steps and maximizing the probability of selecting a better clustered. A significant research contribution of the proposed system is its assurance towards minimizing the transmittance energy as well as receiving energy of a cluster head. The study outcome proved proposed a system to be better than conventional system in the form of energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document