mobile anchor
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 37)

H-INDEX

14
(FIVE YEARS 5)

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2757
Author(s):  
Enas M. Ahmed ◽  
Anar A. Hady ◽  
Sherine M. Abd El-Kader ◽  
A. T. Khalil ◽  
Wael A. Mohamed

In wireless sensor networks, it is crucial to support the collected data of sensor nodes with position information. One of the promising ways to acquire the position of unknown nodes is using a mobile anchor node that traverses throughout the network, stops at determined points, and sends its position to aid in obtaining the location of other unknown nodes. The main challenge in using mobile anchor nodes lies in designing the path model with the highest localization accuracy, shortest path length, full coverage area, and minimal power consumption. In this paper, a path model named the Arrow-Curve path model is proposed for mobile node aided localization. The proposed path model can effectively localize all the static unknown sensor positions in the network field with high positioning accuracy and low power consumption while pledging full coverage area. The sensor network is implemented using MATLAB simulation and MCU node in both static unknown nodes and the mobile anchor node. The realtime environment guarantees a realistic environmental model with reliable results. The path model is implemented in realtime in indoor and outdoor environments and compared to the H-Curve path model using a trilateration technique. The results show that the suggested path model achieves better results compared to H-Curve model. The proposed path model achieves an average position error less than that of H-Curve by 10.6% in a simulation environment, 5% in an outdoor realtime environment, and 9% in an indoor realtime environment, and it decreases power consumption by 62.65% in the simulation environment, 50% in the outdoor realtime environment, and 75% in the realtime environment in indoor compared to H-Curve.


Author(s):  
Mohammad Hafiz Mohamed ◽  
Kamalrulnizam Abu Bakar ◽  
Ismail Fauzi Isnin ◽  
M. Zulkifli M. Zaki ◽  
Herman Herman ◽  
...  

2021 ◽  
Author(s):  
Shalli Rani ◽  
Pardeep Kaur ◽  
vinayakumar ravi ◽  
Gautam Srivast ◽  
Abu-Mahfouz A. M.

Abstract Wireless sensor networks (WSNs) have fabulous attributes to collect data by sensing the surrounding environment. WSNs have a large number of applications that are facing challenges of routing, security, deployment, prolonged lifetime, data computation, and localization. To achieve the high-level performance of WSNs, many researchers have proposed various computational Intelligence (CI) based algorithms for the above-mentioned challenges. The procedure to determine the location of the target node is called node localization. It is easy to determine the coordinates of static nodes accurately but challenging task for the mobile nodes. Localization accuracy directly affects the WSN’s performance. In this paper, a range-based and distributed method are proposed by using the application of the Salp Swarm Algorithm (SSA), and the simulation results are compared with existing approaches such as Particle swarm Optimization (PSO) and H-best Particle Swarm Optimization (HPSO). In this paper, a single mobile anchor node as a reference node traversing the entire network in the Hilbert path and localize the mobile target nodes that are randomly deployed in the networking area. The primary goal behind selecting the Hilbert trajectory is to reduce the issue of LoS. The simulation results show that the proposed method has low localization error and an approximate double number of localized nodes with less computing time as compared to existing methods.


Author(s):  
Chi-Chang Chen ◽  
Zheng-Da Xie

Fractal geometry is a subject that studies non-integer dimensional figures. Most of the fractal geometry figures have a nested or recursive structure. This paper attempts to apply the nested or recursive structure characteristics of fractal geometry to wireless sensor networks. We selected two filling curves, Node-Gosper and Moore, as our research subjects. Node-Gosper Curve is a curve based on node-replacement with a fractal dimension of two. Its first-order graph consists of seven basic line segments. When the hierarchy becomes larger, it can be filled with a hexagonal-like shape. To allow the mobile anchor node of wireless sensor networks to walk along this curve, the number of levels of the Node-Gosper Curve can be adjusted according to parameters such as the sensing area and transmission range. Many space-filling curves have the common shortcoming that they cannot loop on their own, that is, the starting point and the end point are not close, which will cause the mobile anchor node to use extra paths from the end point back to the starting point. The Moore curve has a self-loop, i.e., the starting point and the ending point are almost at the same position. This paper applies Moore curve to the path planning of the mobile anchor node. We can use this path to traverse the entire sensing area and stay in the central point of each square cluster to collect the information of the nodes where the events occurred. The self-loop characteristic of the Moore curve is expected to reach each sensor to collect data faster than other space filling curves, that is, the transmission latency of the sensor traversal will be reduced


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Iram Javed ◽  
Xianlun Tang ◽  
Kamran Shaukat ◽  
Muhammed Umer Sarwar ◽  
Talha Mahboob Alam ◽  
...  

In a wireless sensor network (WSN), node localization is a key requirement for many applications. The concept of mobile anchor-based localization is not a new concept; however, the localization of mobile anchor nodes gains much attention with the advancement in the Internet of Things (IoT) and electronic industry. In this paper, we present a range-free localization algorithm for sensors in a three-dimensional (3D) wireless sensor networks based on flying anchors. The nature of the algorithm is also suitable for vehicle localization as we are using the setup much similar to vehicle-to-infrastructure- (V2I-) based positioning algorithm. A multilayer C-shaped trajectory is chosen for the random walk of mobile anchor nodes equipped with a Global Positioning System (GPS) and broadcasts its location information over the sensing space. The mobile anchor nodes keep transmitting the beacon along with their position information to unknown nodes and select three further anchor nodes to form a triangle. The distance is then computed by the link quality induction against each anchor node that uses the centroid-based formula to compute the localization error. The simulation shows that the average localization error of our proposed system is 1.4 m with a standard deviation of 1.21 m. The geometrical computation of localization eliminated the use of extra hardware that avoids any direct communication between the sensors and is applicable for all types of network topologies.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 727
Author(s):  
Rahul Mourya ◽  
Mauro Dragone ◽  
Yvan Petillot

Underwater acoustic sensor networks (UWASNs) can revolutionize the subsea domain by enabling low-cost monitoring of subsea assets and the marine environment. Accurate localization of the UWASNs is essential for these applications. In general, range-based localization techniques are preferred for their high accuracy in estimated locations. However, they can be severely affected by variable sound speed, multipath spreading, and other effects of the acoustic channel. In addition, an inefficient localization scheme can consume a significant amount of energy, reducing the effective life of the battery-powered sensor nodes. In this paper, we propose robust, efficient, and practically implementable localization schemes for static UWASNs. The proposed schemes are based on the Time-Difference-of-Arrival (TDoA) measurements and the nodes are localized passively, i.e., by just listening to beacon signals from multiple anchors, thus saving both the channel bandwidth and energy. The robustness in location estimates is achieved by considering an appropriate statistical noise model based on a plausible acoustic channel model and certain practical assumptions. To overcome the practical challenges of deploying and maintaining multiple permanent anchors for TDoA measurements, we propose practical schemes of using a single or multiple surface vehicles as virtual anchors. The robustness of localization is evaluated by simulations under realistic settings. By combining a mobile anchor(s) scheme with a robust estimator, this paper presents a complete package of efficient, robust, and practically usable localization schemes for low-cost UWASNs.


Sign in / Sign up

Export Citation Format

Share Document