scholarly journals Network loss reduction and voltage improvement by optimal placement and sizing of distributed generators with active and reactive power injection using fine-tuned PSO

Author(s):  
Eshan Karunarathne ◽  
Jagadeesh Pasupuleti ◽  
Janaka Ekanayake ◽  
Dilini Almeida

<span>Minimization of real power loss and improvement of voltage authenticity of the network are amongst the key issues confronting power systems owing to the heavy demand development problem, contingency of transmission and distribution lines and the financial costs. The distributed generators (DG) has become one of the strongest mitigating strategies for the network power loss and to optimize voltage reliability over integration of capacitor banks and network reconfiguration. This paper introduces an approach for the optimizing the  placement and sizes of different types of DGs in radial distribution systems using a fine-tuned particle swarm optimization (PSO). The suggested approach is evaluated on IEEE 33, IEEE 69 and a real network in Malaysian Context. Simulation results demonstrate the productiveness of active and reactive power injection into the electric power system and the comparison depicts that the suggested fine-tuned PSO methodology could accomplish a significant reduction in network power loss than the other research works.</span>

Author(s):  
Ambika Prasad Hota ◽  
Sivkumar Mishra ◽  
Debani Prasad Mishra ◽  
Surender Reddy Salkuti

Abstract This paper presents a new active power loss allocation (LA) scheme for fair allocation of losses among the end-user with due consideration to deregulation in power supply. In this deregulated environment, the developed technique assigns losses judiciously because it has simplified the difficulties lying with the division of cross-term power loss equation analytically without any assumptions and approximations. Further, it establishes a direct relationship between two end-voltages of a branch and its subsequent load currents, in terms of node-injected complex powers. This LA scheme assigns losses to the network participants with due consideration to their demands, power factors, and geographical locations in the network. Again, the strategy followed for remuneration of distributed generators (DGs) awards all benefits of network loss reduction (NLR) to the DG owners in terms of incentives/penalties after analyzing their actual impact towards system loss reduction. The effectiveness of the proposed method is not only investigated at different load levels but also with various types of DG power injection using a 33-bus radial distribution network (RDN) with/without DGs. The comparison results obtained signify the novelty of the present technique in contrast to other discussed established methods.


KURVATEK ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 1-6
Author(s):  
Sugiarto Kadiman

This paper presents a proposed function which is known as techno-economic model for optimal placement of distributed generation (DG) resources in distribution systems in order to minimize the power losses and improve voltage profile. Combined sensitivity factors (CSF), such real power loss reduction index, reactive power loss reduction index, voltage profile improvement index, and life cycle cost, and particle swarm optimization (PSO) are applied to the proposed technique to obtain the best compromise between these costs. Simulation results on IEEE 14-bus test system are presented to demonstrate the usefulness of the proposed procedure.


Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 187-204
Author(s):  
Gian Giuseppe Soma

Nowadays, response to electricity consumption growth is mainly supported by efficiency; therefore, this is the new main goal in the development of electric distribution networks, which must fully comply with the system’s constraints. In recent decades, the issue of independent reactive power services, including the optimal placement of capacitors in the grid due to the restructuring of the electricity industry and the creation of a competitive electricity market, has received attention from related companies. In this context, a genetic algorithm is proposed for optimal planning of capacitor banks. A case study derived from a real network, considering the application of suitable daily profiles for loads and generators, to obtain a better representation of the electrical conditions, is discussed in the present paper. The results confirmed that some placement solutions can be obtained with a good compromise between costs and benefits; the adopted benefits are energy losses and power factor infringements, taking into account the network technical limits. The feasibility and effectiveness of the proposed algorithm for optimal placement and sizing of capacitor banks in distribution systems, with the definition of a suitable control pattern, have been proved.


2013 ◽  
Vol 397-400 ◽  
pp. 1113-1116
Author(s):  
Xiao Meng Wu ◽  
Wang Hao Fei ◽  
Xiao Mei Xiang ◽  
Wen Juan Wang

In order to solve the problem in reactive power compensation of oilfield distribution systems at present, a Taboo search algorithm is proposed in this paper, by which the optimal location and size of shunt capacitors on distribution systems are determined. Then the voltage profile is improved and the active power loss is reduced. In this paper, Voltage qualified is used as objective function to search an initial solution that meets the voltage constraints so that it is feasible in practicable voltage range; then the global optimum solution can be got when taking the reduced maximum of active power loss as objective unction. The examples show that the improved algorithm is feasible and effective.


Author(s):  
Sunday Adeleke Salimon ◽  
Gafari Abiola Adepoju ◽  
Isaiah Gbadegesin Adebayo ◽  
Oluwadamilare Bode Adewuyi ◽  
Saheed Oluwasina Amuda

This paper presents a Cuckoo Search (CS) algorithm-based methodology for simultaneous optimal placement and sizing of Shunt Capacitors (SCs) and Distributed Generations (DGs) together in radial distribution systems. The objectives of the work are to minimize the real power and reactive power losses while maximizing the voltage stability index of the distribution network subjected to equality and inequality constraints. Different operational test cases are considered namely installation of SCs only, DGs only, SCs before DGs, DGs before SCs, and SCs and DGs at one time. The proposed method has been demonstrated on standard IEEE 33-bus and a practical Ayepe 34-bus radial distribution test systems. The highest percentage power loss reduction of 94.4% and other substantial benefits are obtained when SCs and DGs are optimally installed simultaneously. Simulated results obtained from the proposed technique are compared with other well-known optimization algorithms and found to be more effective.


Author(s):  
Gaikwad Vikas Subhash ◽  
Swati S. More

Reactive power compensation is an important issue in electric power systems, involving operational, economical and quality of service aspects. Consumer loads (residential, industrial, service sector, etc.) impose active and reactive power demand, depending on their characteristics. This paper presents an efficient method for solving the load flow problem in distribution systems and which is implemented for Pune city (India) to check the validity of proposed method. A simple algebraic matrix equation to solve the load flow problem is derived by using the complex power balance equations. By adopting the rectangular coordinate, which requires the neglect of only second order terms in the linearization procedure, the proposed method gives better convergence characteristics. Newton-Raphsonmethod is the famous load flow calculation technique, and normally used dueto its rapidness of numerical convergence. The proposed method estimates the incremental changesof active power on each generation bus with respect to the total system power loss, efficiency and the estimated value are used to update the slack bus power.


Sign in / Sign up

Export Citation Format

Share Document