scholarly journals Digital image processing methods for estimating leaf area of cucumber plants

Author(s):  
Uoc Quang Ngo ◽  
Duong Tri Ngo ◽  
Hoc Thai Nguyen ◽  
Thanh Dang Bui

Increasingly <span>emerging technologies in agriculture such as computer vision, artificial intelligence technology, not only make it possible to increase production. To minimize the negative impact on climate and the environment but also to conserve resources. A key task of these technologies is to monitor the growth of plants online with a high accuracy rate and in non-destructive manners. It is known that leaf area (LA) is one of the most important growth indexes in plant growth monitoring system. Unfortunately, to estimate the LA in natural outdoor scenes (the presence of occlusion or overlap area) with a high accuracy rate is not easy and it still remains a big challenge in eco-physiological studies. In this paper, two accurate and non-destructive approaches for estimating the LA were proposed with top-view and side-view images, respectively. The proposed approaches successfully extract the skeleton of cucumber plants in red, green, and blue (RGB) images and estimate the LA of cucumber plants with high precision. The results were validated by comparing with manual measurements. The experimental results of our proposed algorithms achieve 97.64% accuracy in leaf segmentation, and the relative error in LA estimation varies from 3.76% to 13.00%, which could meet the requirements of plant growth monitoring </span>systems.

2020 ◽  
Vol 79 (47-48) ◽  
pp. 34955-34971 ◽  
Author(s):  
Abhipray Paturkar ◽  
Gourab Sen Gupta ◽  
Donald Bailey

2017 ◽  
Vol 10 (1) ◽  
pp. 58-64
Author(s):  
Indera Sakti Nasution

Non-destructive measurement of approaches of modeling can be very convenient and useful for plant growth estimation. This study, digital image processing was evaluated as a non-destructive technique to estimate leaf area of Bellis perennis. The plant samples were growing in the greenhouse and the images were taken every day using Kinect camera. The proposed method used combination of L*a*b* color space, Otsu’s thresholding, morphological operations and connected component analysis to estimate leaf area of Bellis perennis. L* channel was used to distinguish the leaves and background. Calibration area uses a pot of known area in each image as a scale to calibrate the leaves area. The results show that the algorithm is able to separate leaf pixels from soil or pot backgrounds, and also allow it to be implemented in greenhouse automatically. This algorithm can be used for other plants in assumption that there is not too much leaf overlapped during measurement.


2015 ◽  
Vol 14 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Djoko Eko Hadi Susilo

The purpose of this research is to know and identification constanta value of leaf shape for leaf area measurement using length cross width of leaf of horticulture plant in peat soil. This research was conducted from February to May 2015 in Palangka Raya City, Central Kalimantan. This research implemented by observed of leaf from 32 species of horticulture plant in peat soil. In every species, was observed 30 leaf (lamina). Measuring leaf area absolutelly using on grid paper or millimeter graph paper, and than measuring ratio if leaf area is can finding using length cross width of leaf. Result of this research, showed that 32 species of horticulture plant in peat soil have regularity of leaf shape and can identified of constanta value for leaf area measurement using length cross width of leaf.Leaf area measurement using length cross width of leaf is alternative technique because easier (simple), quick (fast), low cost, and accurate to plant growth analysis for non-destructive methods. Leaf area measurement not explain plant growth only, but many purposes was can resulted from it. This research suggested to identification of constanta value of leaf shape for another species horticulture plant in peat soil cultivation.


2020 ◽  
Vol 4 (4) ◽  
pp. 281-290
Author(s):  
Tingzhu Chen ◽  
Yaoyao Qian ◽  
Jingyu Pei ◽  
Shaoteng Wu ◽  
Jiang Wu ◽  
...  

Oracle bone script recognition (OBSR) has been a fundamental problem in research on oracle bone scripts for decades. Despite being intensively studied, existing OBSR methods are still subject to limitations regarding recognition accuracy, speed and robustness. Furthermore, the dependency of these methods on expert knowledge hinders the adoption of OBSR systems by the general public and also discourages social outreach of research outputs. Addressing these issues, this study proposes an encoding-based OBSR system that applies image pre-processing techniques to encode oracle images into small matrices and recognize oracle characters in the encoding space. We tested our methods on a collection of oracle bones from the Yin Ruins in XiaoTun village, and achieved a high accuracy rate of 99% within a time range of milliseconds.


Author(s):  
Xue Zhou ◽  
Jinmeng Xiang ◽  
Jiming Zheng ◽  
Xiaoqi Zhao ◽  
Hao Suo ◽  
...  

Near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) light source have great potential in non-destructive detection, promoting plant growth and night vision applications, while the discovery of a broad-band NIR phosphor still...


Author(s):  
Rahul Raj ◽  
Jeffrey P. Walker ◽  
Rohit Pingale ◽  
Rohit Nandan ◽  
Balaji Naik ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 357
Author(s):  
Zhaohui Jia ◽  
Miaojing Meng ◽  
Chong Li ◽  
Bo Zhang ◽  
Lu Zhai ◽  
...  

Anthropogenic overexploitation poses significant threats to the ecosystems that surround mining sites, which also have tremendous negative impacts on human health and society safety. The technological capacity of the ecological restoration of mine sites is imminent, however, it remains a challenge to sustain the green restorative effects of ecological reconstruction. As a promising and environmentally friendly method, the use of microbial technologies to improve existing ecological restoration strategies have shown to be effective. Nonetheless, research into the mechanisms and influences of rock-solubilizing microbial inoculums on plant growth is negligible and the lack of this knowledge inhibits the broader application of this technology. We compared the effects of rock-solubilizing microbial inoculums on two plant species. The results revealed that rock-solubilizing microbial inoculums significantly increased the number of nodules and the total nodule volume of Robinia pseudoacacia L. but not of Lespedeza bicolor Turcz. The reason of the opposite reactions is possibly because the growth of R. pseudoacacia was significantly correlated with nodule formation, whereas L. bicolor’s growth index was more closely related to soil characteristics and if soil nitrogen content was sufficient to support its growth. Further, we found that soil sucrase activity contributed the most to the height of R. pseudoacacia, and the total volume of root nodules contributed most to its ground diameter and leaf area. Differently, we found a high contribution of total soil carbon to seedling height and ground diameter of L. bicolor, and the soil phosphatase activity contributed the most to the L. bicolor’ s leaf area. Our work suggests that the addition of rock-solubilizing microbial inoculums can enhance the supply capacity of soil nutrients and the ability of plants to take up nutrients for the promotion of plant growth. Altogether, our study provides technical support for the practical application of rock-solubilizing microbes on bare rock in the future.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Joanna M. Nassar ◽  
Sherjeel M. Khan ◽  
Diego Rosas Villalva ◽  
Maha M. Nour ◽  
Amani S. Almuslem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document