scholarly journals Comparison between classical ‘P&O’ algorithm and FLC of MPPT for GPV under partial shading

Author(s):  
Youcef Abdelaziz ◽  
Bouanane Abdelkrim ◽  
Merah Abdelkader

<p><span lang="EN-US">When the GPV is under partial shading, several peaks appear in the characteristic P-V, namely a GMP and one or more local maximums. The classical algorithm ‘P&amp;O’ MPPT cannot converge on the GMP for low irradiation values and is trapped by tracking down a LMP so making the algorithm ineffective making the algorithm ineffective, in this case under 200 W/m². An alternative objective function is developed to optimize the performance of the FLC by selecting the appropriate gains using PSO. In this simulation the GPV is composed of one hundred modules grouped parallel series (10x10) and subjected to partial shading. The proposed FLC provides better performance for GMP tracking for the chosen shade configuration selected.</span></p>

2013 ◽  
Vol 773 ◽  
pp. 108-112 ◽  
Author(s):  
Xue Song Zhou ◽  
Xue Bo Shen ◽  
You Jie Ma

Existing model of solar cells is not suitable for partial shading condition, which makes output current-voltage (I-V) curve of photovoltaic (PV) array staid-stepping. Furthermore, Power-Voltage (P-V) characteristics may exist more than two local peak value in partially shading which bring interferences to maximum power point tracking (MPPT). Based on modified engineering model of solar cells, an accurate model of array was proposed considering variation of shadows. And the I-V characteristic, P-V characteristic and yield of PV modules were analyzed. At last, the optimum output power with different shadows arrangement was discussed.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Giovanni Caruso

In this paper, an adaptive electromagnetic energy harvester is proposed and analyzed. It is composed of an oscillating mass equipped with an electromagnetic transducer, whose pins are connected to a resonant resistive–inductive–capacitive electric circuit in order to increase its effective bandwidth. Closed-form expressions for the optimal circuit parameters are presented, which maximize the power harvested by the device under harmonic excitation. The harvesting efficiency, defined as the ratio between the harvested power and the power absorbed by the oscillating device, is also reported. It is used as an alternative objective function for the optimization of the harvester circuit parameters.


Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 552-563
Author(s):  
Scott C. Hornbostel

Predictive deconvolution filters are designed to remove as much predictable energy as possible from the input data. It is generally understood that temporally correlated geology can cause problems for these filters. It is perhaps less well appreciated that uncorrelated random noise can also severely affect filter performance. The root of these problems is in the objective function being minimized; in addition to minimizing predictable multiple energy, the filter is attempting to simultaneously minimize the temporally correlated geology and the random‐noise energy. Instead of minimizing the input trace energy, an alternative objective function for minimization can be defined that is the result of a linear operator acting on the input data. Ideally this alternative objective function contains only the targeted noise (e.g., multiples). The linear operator that creates this objective function is designated as the “noise‐optimized objective” (NOO) operator. The filter that minimizes this new objective function is the NOO filter. Useful NOO operators for multiple suppression are those that maximize multiple energy and/or minimize primary or random noise energy in the data. Examples of such linear operators include stacking, bandpass filtering, dip filtering, and muting or scaling. Simply scaling down the primary‐containing portion of the objective function can address the problematic removal of correlated geology. Stacking can also be a useful NOO operator. By minimizing the predictable energy on a stacked trace, the prestack filters are less affected by random noise. The NOO stacking method differs from a standard poststack filter design because the filters are designed to be applied prestack. Further, this method differs from a standard prestack prediction filter because it minimizes the predictable energy on the stacked trace. The standard prestack filter has reduced multiple suppression because the filter must compromise between minimizing the multiple energy and minimizing the random noise energy. Minimizing the impact of random noise can be quite important in prediction filtering. At a signal‐to‐random‐noise ratio of one, for example, half the multiple remains after filtering. This random noise‐related degradation might help to explain the common observation that prediction filters tend to leave multiple energy in the data. A time‐varying gap implementation of a stacking NOO filter addresses these random noise effects while also addressing data aperiodicity issues.


Author(s):  
Paul A Chircop ◽  
Timothy J Surendonk

The Patrol Boat Scheduling Problem with Complete Coverage (PBSPCC) is concerned with finding a minimum size patrol boat fleet to provide continuous coverage at a set of maritime patrol regions, ensuring that there is at least one vessel on station in each patrol region at any given time. This requirement is complicated by the necessity for patrol vessels to be replenished on a regular basis in order to carry out patrol operations indefinitely. In this paper, we establish a number of important theoretical results for the PBSPCC. In particular, we establish a set of conditions under which an alternative objective function (minimize the total time not spent on patrol) can be used to derive a minimum size fleet. Preliminary results suggest that the new theoretical insights can be used as part of an acceleration strategy to improve the column generation runtime performance.


Sign in / Sign up

Export Citation Format

Share Document