A noise‐optimized objective method for predictive deconvolution

Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 552-563
Author(s):  
Scott C. Hornbostel

Predictive deconvolution filters are designed to remove as much predictable energy as possible from the input data. It is generally understood that temporally correlated geology can cause problems for these filters. It is perhaps less well appreciated that uncorrelated random noise can also severely affect filter performance. The root of these problems is in the objective function being minimized; in addition to minimizing predictable multiple energy, the filter is attempting to simultaneously minimize the temporally correlated geology and the random‐noise energy. Instead of minimizing the input trace energy, an alternative objective function for minimization can be defined that is the result of a linear operator acting on the input data. Ideally this alternative objective function contains only the targeted noise (e.g., multiples). The linear operator that creates this objective function is designated as the “noise‐optimized objective” (NOO) operator. The filter that minimizes this new objective function is the NOO filter. Useful NOO operators for multiple suppression are those that maximize multiple energy and/or minimize primary or random noise energy in the data. Examples of such linear operators include stacking, bandpass filtering, dip filtering, and muting or scaling. Simply scaling down the primary‐containing portion of the objective function can address the problematic removal of correlated geology. Stacking can also be a useful NOO operator. By minimizing the predictable energy on a stacked trace, the prestack filters are less affected by random noise. The NOO stacking method differs from a standard poststack filter design because the filters are designed to be applied prestack. Further, this method differs from a standard prestack prediction filter because it minimizes the predictable energy on the stacked trace. The standard prestack filter has reduced multiple suppression because the filter must compromise between minimizing the multiple energy and minimizing the random noise energy. Minimizing the impact of random noise can be quite important in prediction filtering. At a signal‐to‐random‐noise ratio of one, for example, half the multiple remains after filtering. This random noise‐related degradation might help to explain the common observation that prediction filters tend to leave multiple energy in the data. A time‐varying gap implementation of a stacking NOO filter addresses these random noise effects while also addressing data aperiodicity issues.

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1648
Author(s):  
Marinko Barukčić ◽  
Toni Varga ◽  
Vedrana Jerković Jerković Štil ◽  
Tin Benšić

The paper researches the impact of the input data resolution on the solution of optimal allocation and power management of controllable and non-controllable renewable energy sources distributed generation in the distribution power system. Computational intelligence techniques and co-simulation approach are used, aiming at more realistic system modeling and solving the complex optimization problem. The optimization problem considers the optimal allocation of all distributed generations and the optimal power control of controllable distributed generations. The co-simulation setup employs a tool for power system analysis and a metaheuristic optimizer to solve the optimization problem. Three different resolutions of input data (generation and load profiles) are used: hourly, daily, and monthly averages over one year. An artificial neural network is used to estimate the optimal output of controllable distributed generations and thus significantly decrease the dimensionality of the optimization problem. The proposed procedure is applied on a 13 node test feeder proposed by the Institute of Electrical and Electronics Engineers. The obtained results show a huge impact of the input data resolution on the optimal allocation of distributed generations. Applying the proposed approach, the energy losses are decreased by over 50–70% by the optimal allocation and control of distributed generations depending on the tested network.


2021 ◽  
Vol 11 (5) ◽  
pp. 2175
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Jesus C. Hernández

The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.


2018 ◽  
Vol 21 (03) ◽  
pp. 1850020
Author(s):  
Li-Hua Lai ◽  
Ching-Hao Chen ◽  
Tung-Cheng Chang

Environmental insurance (EI) protections help resolve the firm-industry economic loss problem. However, the loss ratio of EI is positively affected by itself from one period ahead. The positive and negative effects of macroeconomic factor on the loss ratio of EIs are not necessarily consistent, but they are dependent on the effect of the year’s environmental condition. The economic variables affecting the loss ratio of EI are quite inconsistent, so insurance prices and liability reserves should be modified every year. While the investigations are the special properties of our input data of Taiwan, the prescription of this paper could provide cross-references with other countries.


2014 ◽  
Vol 76 ◽  
pp. 100-106
Author(s):  
Francisco Fernández Zacarías ◽  
Ricardo Hernández Molina ◽  
José Luis Cueto Ancela ◽  
Simón Lubián López ◽  
Isabel Benavente Fernández

Author(s):  
Eduardo Divo ◽  
Alain J. Kassab ◽  
Jennifer Gill

Characterization of the thermal contact resistance is important in modeling of multi-component thermal systems which feature mechanically mated surfaces. Thermal resistance is phenomenologically quite complex and depends on many parameters including surface characteristics of the interfacial region and contact pressure. In general, the contact resistance varies as a function of pressure and is non-uniform along the interface. An inverse problem is formulated to estimate the variation of the contact resistance. A two-dimensional model is considered where the contact resistance is sought along the contact line at the interface between two regions. Temperature measured at discrete locations using embedded sensors placed in proximity to the interface provides the additional information required to solve the inverse problem. Given current estimates of the contact resistance as a function of position along the interface, a forward problem is solved, and a quadratic objective function is formulated to evaluate the difference between predicted temperatures at the sensors and those measured. A genetic algorithm is used to minimize the objective function and obtain the best estimate of the contact resistance. A boundary element method is used to solve the forward temperature field problem. Numerical simulations are carried out to demonstrate the approach. Random noise is used to simulate the effect of input uncertainties in measured temperatures at the sensors.


2013 ◽  
Vol 7 (3) ◽  
pp. 252-257

The subject of this article is the estimation of quantitative (hydrological) and qualitative parameters in the catchment of Ronnea (1800 Km2, located in south western Sweden) through the application of the Soil and Water Assessment Tool (SWAT). SWAT is a river basin model that was developed for the U.S.D.A. Agricultural Research Service, by the Blackland Research Center in Texas. The SWAT model is a widely known tool that has been used in several cases world-wide. It has the ability to predict the impact of land management practices on water, sediment and agricultural chemical yield in large complex watersheds. The present work investigates certain capabilities of the SWAT model which have not identified up to now. More in specific, the main targets of the work carried out are the following: • Identification of the existing hydrological and qualitative conditions • Preparation - Processing of data required to be used as input data of the model • Hydrological calibration - validation of the model, in 7 subbasins of the Catchment of Ronnea • Estimation and evaluation of the simulated qualitative parameters of the model All available data were offered by the relevant Institutes of Sweden, in the framework of the European program EUROHARP. The existing conditions in the catchment of Ronnea, are described in detail including topography, land uses, soil types, pollution sources, agricultural management practices, precipitation, temperature, wind speed, humidity, solar radiation as well as observed discharges and Nitrogen and Phosphorus substances concentrations. Most of the above data were used as input data for the application of SWAT model. Adequate methods were also used to complete missing values in time series and estimate additional parameters (such as soil parameters) required by the model. Hydrological calibration and validation took place for each outlet of the 7 subbasins of Ronnea catchment in an annual, monthly and daily step. The calibration was achieved by estimating parameters related to ground water movement and evaluating convergence between simulated and observed discharges by using mainly the Nash & Sutcliffe coefficient (NTD). Through the sensitivity analysis, main parameters of the hydrological simulation, were detected. According to the outputs of the SWAT model, the water balance of Ronnea catchment was also estimated. Hydrological calibration and validation is generally considered sufficient in an annual and monthly step. Hydrological calibration – validation in daily step, generally does not lead to high values of the NTD indicator. However, when compared to results obtained by the use of SWAT in Greece, a relatively high value of NTD is achieved in one subbasin. Finally, a comparison between the simulated and observed concentrations of total Phosphorus and Nitrogen was carried out.


2019 ◽  
Vol 2 (4) ◽  
pp. 86-104
Author(s):  
Yuliya Orlovska ◽  
Nika Ilkova

It is precisely in the course of adjusting the activities of these subjects, the main task of state regulation of the bankruptcy institute is the formation of such conditions for the functioning of the national economy, which will reduce the risk of doing business for all its entities and promote the internal reorganization of its structure in accordance with the requirements of global transformations. The system of indicators describing the situation in a certain area of ​​the functioning of national economic entities allows us to determine, directly or indirectly, the effectiveness of the bankruptcy institute at the macro-level. To analyze the impact of each of the factors on GDP, a sensitivity analysis was conducted according to which input data X were recorded at the values ​​of 2018 and alternately changed by 10%. For each such change, GDP was calculated as compared to the model value for 2018. As a result of the calculations, the most sensitive factors were identified and features of the functioning of the bankruptcy institute in the Ukrainian economy were identified. The main provisions of a state policy aimed at increasing the functional effectiveness of the bankruptcy institute are formulated. First of all, it is necessary to promote the country's position in the Doing business rankings, as well as the Indexes of Economic Freedom and Corruption Perceptions. On the other hand, an annual growth of the inflation index of around 10% and the level of the fiscal tax burden will also have a positive effect on GDP dynamics.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Federica Contò ◽  
Grace Edwards ◽  
Sarah Tyler ◽  
Danielle Parrott ◽  
Emily Grossman ◽  
...  

Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.


2019 ◽  
Author(s):  
Matteo U. Parodi ◽  
Alessio Giardino ◽  
Ap van Dongeren ◽  
Stuart G. Pearson ◽  
Jeremy D. Bricker ◽  
...  

Abstract. Considering the likely increase of coastal flooding in Small Island Developing States (SIDS), coastal managers at the local and global level have been developing initiatives aimed at implementing Disaster Risk Reduction (DRR) measures and adapting to climate change. Developing science-based adaptation policies requires accurate coastal flood risk (CFR) assessments, which are often subject to the scarcity of sufficiently accurate input data for insular states. We analysed the impact of uncertain inputs on coastal flood damage estimates, considering: (i) significant wave height, (ii) storm surge level and (iii) sea level rise (SLR) contributions to extreme sea levels, as well as the error-driven uncertainty in (iv) bathymetric and (v) topographic datasets, (vi) damage models and (vii) socioeconomic changes. The methodology was tested through a sensitivity analysis using an ensemble of hydrodynamic models (XBeach and SFINCS) coupled with an impact model (Delft-FIAT) for a case study at the islands of São Tomé and Príncipe. Model results indicate that for the current time horizon, depth damage functions (DDF) and digital elevation model (DEM) dominate the overall damage estimation uncertainty. We find that, when introducing climate and socioeconomic uncertainties to the analysis, SLR projections become the most relevant input for the year 2100 (followed by DEM and DDF). In general, the scarcity of reliable input data leads to considerable predictive error in CFR assessments in SIDS. The findings of this research can help to prioritise the allocation of limited resources towards the acquisitions of the most relevant input data for reliable impact estimation.


Sign in / Sign up

Export Citation Format

Share Document