Vertical Ridge Augmentation with Titanium-Reinforced, Dense-PTFE Membranes and a Combination of Particulated Autogenous Bone and Anorganic Bovine Bone–Derived Mineral: A Prospective Case Series in 19 Patients

2014 ◽  
Vol 29 (1) ◽  
pp. 185-193 ◽  
Author(s):  
Istvan A. Urban ◽  
Jaime L. Lozada ◽  
Sascha A. Jovanovic ◽  
Heiner Nagursky ◽  
Katalin Nagy
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3828
Author(s):  
Jung-Gu Ji ◽  
Jung-A Yu ◽  
Seong-Ho Choi ◽  
Dong-Woon Lee

Vertical ridge augmentation for long-term implant stability is difficult in severely resorbed areas. We examined the clinical, radiological, and histological outcomes of guided-bone regeneration using novel titanium-reinforced microporous expanded polytetrafluoroethylene (MP-ePTFE) membranes. Eighteen patients who underwent implant placement using a staged approach were enrolled (period: 2018–2019). Vertical ridge augmentation was performed in areas with vertical bone defects ≥ 4 mm. Twenty-six implant fixtures were placed in 14 patients. At implant placement six fixtures had relatively low stability. On cone-beam computed tomography, the average vertical changes were 4.2 ± 1.9 (buccal), 5.9 ± 2.7 (central), and 4.4 ± 2.8 mm (lingual) at six months after vertical ridge augmentation. Histomorphometric analyses revealed that the average proportions of new bone, residual bone substitute material, and soft tissue were 34.91 ± 11.61%, 7.16 ± 2.74%, and 57.93 ± 11.09%, respectively. Stable marginal bone levels were observed at 1-year post-loading. The residual bone graft material area was significantly lower in the exposed group (p = 0.003). There was no significant difference in the vertical height change in the buccal side between immediately after the augmentation procedure and the implant placement reentry time (p = 0.371). However, all implants functioned well regardless of the exposure during the observation period. Thus, vertical ridge augmentation around implants using titanium-reinforced MP-ePTFE membranes can be successful.


Author(s):  
Sergio Charifker Ribeiro Martins

The use of guided bone regeneration (GBR) has been gaining more and more ground in the field of implant dentistry, due to higher confidence in the materials available. As this is a highly versatile technique, the same biological basis-cell exclusion–can be used to treat any type of defect. Vertical augmentation in the alveolar ridge is currently treated by the GBR principle, predictably and with high success rates, using a rigid framework associated with a mix of hydroxyapatite and autogenous bone. Lyophilized bovine bone is the hydroxyapatite of choice for this condition because it allows bone volume to be maintained over a long period of time, due to its slow resorption. Another important char-acteristic found in hydroxyapatite is its porosity since it allows – in addition to graft neo-vascularization–a greater ease of cell adhesion when compared to crystalline materials. Thus, this clinical case presents the use (for the first time in the literature) of a vertical augmentation of an atrophic ridge using Criteria Lumina Bone Porous® as the hydroxy-apatite of choice for association with autogenous bone particles.


Author(s):  
Peter Windisch ◽  
Kristof Orban ◽  
Giovanni E. Salvi ◽  
Anton Sculean ◽  
Balint Molnar

Abstract Objectives To evaluate the feasibility of a newly proposed minimally invasive split-thickness flap design without vertical-releasing incisions for vertical bone regeneration performed in either a simultaneous or staged approach and to analyze the prevalence of adverse events during postoperative healing. Materials and methods Following preparation of a split-thickness flap and bilaminar elevation of the mucosa and underlying periosteum, the alveolar bone was exposed over the defects, vertical GBR was performed by means of a titanium-reinforced high-density polytetrafluoroethylene membrane combined with particulated autogenous bone (AP) and bovine-derived xenograft (BDX) in 1:1 ratio. At 9 months after reconstructive surgery, vertical and horizontal hard tissue gain was evaluated based on clinical and radiographic examination. Results Twenty-four vertical alveolar ridge defects in 19 patients were treated with vertical GBR. In case of 6 surgical sites, implant placement was performed at the time of the GBR (simultaneous group); in the remaining 18 surgical, sites implant placement was performed 9 months after the ridge augmentation (staged group). After uneventful healing in 23 cases, hard tissue fill was detected in each site. Direct clinical measurements confirmed vertical and horizontal hard tissue gain averaging 3.2 ± 1.9 mm and 6.5 ± 0.5 mm respectively, in the simultaneous group and 4.5 ± 2.2 mm and 8.7 ± 2.3 mm respectively, in the staged group. Additional radiographic evaluation based on CBCT data sets in the staged group revealed mean vertical and horizontal hard tissue fill of 4.2 ± 2.0 mm and 8.5 ± 2.4 mm. Radiographic volume gain was 1.1 ± 0.4 cm3. Conclusion Vertical GBR consisting of a split-thickness flap and using titanium-reinforced non-resorbable membrane in conjunction with a 1:1 mixture of AP+BDX may lead to a predictable vertical and horizontal hard tissue reconstruction. Clinical relevance The used split-thickness flap design may represent a valuable approach to increase the success rate of vertical GBR, resulting in predicable hard tissue regeneration, and favorable wound healing with low rate of membrane exposure.


2021 ◽  
Vol 11 (13) ◽  
pp. 6115
Author(s):  
Jeong-Kui Ku ◽  
Yeong Kon Jeong ◽  
Yong-Suk Choi ◽  
Taeyeong Kim ◽  
In-Woo Cho ◽  
...  

Wound dehiscence is the most frequent complication after ridge augmentation and causes postoperative infection, inadequate bone healing, or graft failure. In the oral cavity, conservative treatment for dehiscence is difficult to maintain until secondary healing occurs because of its normal flora, dynamic masticatory muscle movement, and humid environment. This paper reports an effective conservative method using an oral wound dressing material with an omnivec splint and presents three wound dehiscence cases: (1) autogenous tooth bone graft material with a collagen membrane, with dehiscence occurring at postoperative 5 days. (2) Autogenous bone graft covering titanium mesh, with dehiscence occurring at postoperative three weeks. The mesh was removed after 10 weeks with histologic analysis. (3) Autogenous bone and autogenous tooth bone graft covering a titanium mesh, with dehiscence occurring at postoperative 1 week. The exposed titanium mesh was maintained for 6 months after the graft. All cases achieved secondary healing and acceptable outcomes for a dental implant by conservative treatment without infection after the dehiscence after ridge augmentation.


Sign in / Sign up

Export Citation Format

Share Document