scholarly journals Vertical-guided bone regeneration with a titanium-reinforced d-PTFE membrane utilizing a novel split-thickness flap design: a prospective case series

Author(s):  
Peter Windisch ◽  
Kristof Orban ◽  
Giovanni E. Salvi ◽  
Anton Sculean ◽  
Balint Molnar

Abstract Objectives To evaluate the feasibility of a newly proposed minimally invasive split-thickness flap design without vertical-releasing incisions for vertical bone regeneration performed in either a simultaneous or staged approach and to analyze the prevalence of adverse events during postoperative healing. Materials and methods Following preparation of a split-thickness flap and bilaminar elevation of the mucosa and underlying periosteum, the alveolar bone was exposed over the defects, vertical GBR was performed by means of a titanium-reinforced high-density polytetrafluoroethylene membrane combined with particulated autogenous bone (AP) and bovine-derived xenograft (BDX) in 1:1 ratio. At 9 months after reconstructive surgery, vertical and horizontal hard tissue gain was evaluated based on clinical and radiographic examination. Results Twenty-four vertical alveolar ridge defects in 19 patients were treated with vertical GBR. In case of 6 surgical sites, implant placement was performed at the time of the GBR (simultaneous group); in the remaining 18 surgical, sites implant placement was performed 9 months after the ridge augmentation (staged group). After uneventful healing in 23 cases, hard tissue fill was detected in each site. Direct clinical measurements confirmed vertical and horizontal hard tissue gain averaging 3.2 ± 1.9 mm and 6.5 ± 0.5 mm respectively, in the simultaneous group and 4.5 ± 2.2 mm and 8.7 ± 2.3 mm respectively, in the staged group. Additional radiographic evaluation based on CBCT data sets in the staged group revealed mean vertical and horizontal hard tissue fill of 4.2 ± 2.0 mm and 8.5 ± 2.4 mm. Radiographic volume gain was 1.1 ± 0.4 cm3. Conclusion Vertical GBR consisting of a split-thickness flap and using titanium-reinforced non-resorbable membrane in conjunction with a 1:1 mixture of AP+BDX may lead to a predictable vertical and horizontal hard tissue reconstruction. Clinical relevance The used split-thickness flap design may represent a valuable approach to increase the success rate of vertical GBR, resulting in predicable hard tissue regeneration, and favorable wound healing with low rate of membrane exposure.

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2389 ◽  
Author(s):  
Carlo Maiorana ◽  
Mattia Manfredini ◽  
Mario Beretta ◽  
Fabrizio Signorino ◽  
Andrea Bovio ◽  
...  

Background: bone augmentation by means of manually shaped titanium mesh is an established procedure to regenerate atrophic alveolar ridges and recreate a proper contour of the peri-implant bone anatomy. Conversely, current literature on the use of preformed titanium meshes instead of traditional grids remains lacking. Therefore, the aim of the present prospective study was to evaluate the use of preformed titanium mesh to support bone regeneration simultaneously to implant placement at dehiscence-type defects from clinical, radiological, and patient-related outcomes. Methods: 8 implants showing buccal dehiscence defects were treated with preformed titanium mesh directly fixed to flat abutments screwed to the implant. Intrasurgical clinical measurements and radiographic evaluations by means of cone-beam computed tomography scans were performed to assess the horizontal bone gain after 8 months from the augmentation surgery. Biological and patient-centered outcomes were also evaluated.; Results: clinically, a mean horizontal bone gain of 4.95 ± 0.96 mm, and a mean horizontal thickness of the buccal plate of 3.25 ± 0.46 mm were found. A mean horizontal bone gain of 5.06 ± 0.88 mm associated with a mean horizontal thickness of the buccal plate of 3.45 ± 0.68 mm were observed radiographically. From a macroscopic aspect, the remodeled graft appeared well integrated with the host bone. Well vascularized newly formed bone-like tissue was observed in intimate contact with the implants. Conclusions: preformed titanium mesh may be effective in supporting simultaneous horizontal bone regeneration at dehiscence-type peri-implant defects. Titanium mesh exposure still remain an issue in this type of surgery.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Craig E. Hofferber ◽  
J. Cameron Beck ◽  
Peter C. Liacouras ◽  
Jeffrey R. Wessel ◽  
Thu P. Getka

Abstract Background The purpose of this study was to evaluate the volumetric changes in partially edentulous alveolar ridges augmented with customized titanium ridge augmentation matrices (CTRAM), freeze-dried bone allograft, and a resorbable collagen membrane. Methods A pre-surgical cone beam computed tomography (CBCT) scan was obtained for CTRAM design/fabrication and to evaluate pre-surgical ridge dimensions. Ridge augmentation surgery using CTRAM, freeze-dried bone allograft, and a resorbable collagen membrane was performed at each deficient site. Clinical measurements of the area of augmentation were made at the time of CTRAM placement and re-entry, and a 2nd CBCT scan 7 months after graft placement was used for volumetric analysis. Locations of each CTRAM in situ were also compared to their planned positions. Re-entry surgery and implant placement was performed 8 months after CTRAM placement. Results Nine subjects were treated with CTRAM and freeze-dried bone allograft. Four out of the nine patients enrolled (44.4%) experienced premature CTRAM exposure during healing, and in two of these cases, CTRAM were removed early. Early exposure did not result in total graft failure in any case. Mean volumetric bone gain was 85.5 ± 30.9% of planned augmentation volume (61.3 ± 33.6% in subjects with premature CTRAM exposure vs. 104.9% for subjects without premature exposure, p = 0.03). Mean horizontal augmentation (measured clinically) was 3.02 mm, and vertical augmentation 2.86 mm. Mean surgical positional deviation of CTRAM from the planned location was 1.09 mm. Conclusion The use of CTRAM in conjunction with bone graft and a collagen membrane resulted in vertical and horizontal bone gain suitable for implant placement.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3828
Author(s):  
Jung-Gu Ji ◽  
Jung-A Yu ◽  
Seong-Ho Choi ◽  
Dong-Woon Lee

Vertical ridge augmentation for long-term implant stability is difficult in severely resorbed areas. We examined the clinical, radiological, and histological outcomes of guided-bone regeneration using novel titanium-reinforced microporous expanded polytetrafluoroethylene (MP-ePTFE) membranes. Eighteen patients who underwent implant placement using a staged approach were enrolled (period: 2018–2019). Vertical ridge augmentation was performed in areas with vertical bone defects ≥ 4 mm. Twenty-six implant fixtures were placed in 14 patients. At implant placement six fixtures had relatively low stability. On cone-beam computed tomography, the average vertical changes were 4.2 ± 1.9 (buccal), 5.9 ± 2.7 (central), and 4.4 ± 2.8 mm (lingual) at six months after vertical ridge augmentation. Histomorphometric analyses revealed that the average proportions of new bone, residual bone substitute material, and soft tissue were 34.91 ± 11.61%, 7.16 ± 2.74%, and 57.93 ± 11.09%, respectively. Stable marginal bone levels were observed at 1-year post-loading. The residual bone graft material area was significantly lower in the exposed group (p = 0.003). There was no significant difference in the vertical height change in the buccal side between immediately after the augmentation procedure and the implant placement reentry time (p = 0.371). However, all implants functioned well regardless of the exposure during the observation period. Thus, vertical ridge augmentation around implants using titanium-reinforced MP-ePTFE membranes can be successful.


2015 ◽  
Vol 16 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Danilo Alessio Di Stefano ◽  
Gian Battista Greco ◽  
Lorenzo Cinci ◽  
Laura Pieri

ABSTRACT Aim The present work describes a horizontal ridge augmentation in which a titanium mesh was preshaped by adapting it to a stereolithographic model of the patient's jaw that was fabricated from CT scans. Background Guided bone regeneration (GBR) involves covering the augmentation site with a long-lasting barrier to protect it from the invasion of surrounding soft tissues. Among barriers, titanium meshes may provide a successful outcome, but the intraoperatory time needed to shape them is a disadvantage. Case description The 54-year-old patient, missing the right mandibular second bicuspid, first molar, and second molar, had her atrophic ridge augmented with a 30:70 mixture of autogenous bone and equine, enzyme-deantigenic collagenpreserved bone substitute. Two conical implants were inserted concomitantly in the second bicuspid and first molar positions, and the site was protected with the preshaped mesh. Four months later, the titanium mesh was retrieved, a bone sample was collected, and histological and histomorphometric analyses were performed. Provisional and definitive prostheses were then delivered, and follow-up controls were performed for up to 24 months. Conclusion Preshaping the mesh on a model of the patient's mandible shortened the surgical time and enabled faster mesh placement. Two years after surgery, the implants were perfectly functional, and the bone width was stable over time as shown by radiographic controls. Histological analysis of the bone sample showed the heterologous biomaterial to be biocompatible and undergoing advanced remodeling and replacement with newly formed bone. Clinical significance Preshaping a titanium mesh over a stereolithographic model of the patient's jaw allowed for a significant reduction of the intraoperative time and may be therefore, advisable in routine practice. How to cite this article Di Stefano DA, Greco GB, Cinci L, Pieri L. Horizontal-guided Bone Regeneration using a Titanium Mesh and an Equine Bone Graft. J Contemp Dent Pract 2015;16(2):154-162.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Farnoosh Razmara ◽  
Zahra Ghoncheh ◽  
Ghazal Shabankare

Abstract Background A traumatic bone cyst is an uncommon nonneoplastic lesion of the jaws that is considered as a “pseudocyst” because of the lack of an epithelial lining. This lesion is particularly asymptomatic and therefore is diagnosed by routine dental radiographic examination as a unilocular radiolucency with scalloped borders, mainly in the posterior mandibular region. The exact etiopathogenesis of the lesion remains uncertain, though it is often associated with trauma. Case presentation We report three Persian cases of traumatic bone cyst with different clinical and radiographic features, and we present a review of the literature to further discuss diagnostic and treatment challenges. Only one of the three patients reported a history of trauma, and despite the usual signs and symptoms of the lesion, extension of the defect to the ramus, swelling of the lingual cortex, and their unusual presence in the anterior mandible were noted in these patients. Conclusions Because features of this cyst can be varied, careful history taking and radiographic evaluation alongside the clinical signs and symptoms have a very significant role in definitive diagnosis, appropriate treatment, and accurate assessment of prognosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Bruno Freitas Mello ◽  
Márcio de Carvalho Formiga ◽  
Luiz Fernando de Souza da Silva ◽  
Gustavo dos Santos Coura ◽  
Jamil Awad Shibli

The guided bone regeneration (GBR) technique has been used to achieve optimal bone volume augmentation and allow dental implant placement in atrophic maxilla and mandible, with predictable results and high survival rates. The use of bone substitutes has reduced the necessity of autogenous bone grafts, reducing the morbidity at the donor areas and thus improving the patients’ satisfaction and comfort. This clinical case report shows a clinical and histological evaluation of the bone tissue behavior, in a case that required the horizontal augmentation of the alveolar ridge, with the use of xenograft biomaterial and further dental implant placement. After six months of healing time, six implants were placed, and a bone biopsy was done. The histological analysis depicted some fragments of the xenograft bone graft, integrated with the new-formed bone tissue.


2012 ◽  
Vol 38 (S1) ◽  
pp. 533-537 ◽  
Author(s):  
Maria A. Peñarrocha ◽  
Jose A. Vina ◽  
Laura Maestre ◽  
David Peñarrocha-Oltra

The aim is to describe bilateral vertical ridge augmentation with intraoral block grafts and guided bone regeneration in the posterior mandible in preparation for implant placement. A 61-year-old woman, edentulous in the posterior mandible, presented for implant rehabilitation. The radiographic study showed 3 to 6 mm of bone height from the ridge to the mandibular canal. Autogenous bone block grafts from the chin and the mandibular ramus, harvested with ultrasonics, were used to augment the alveolar ridge. To reduce resorption, the grafts were covered with particulate alloplastic material and a collagen membrane. Delayed implants were placed 6 months after vertical augmentation, and 3 months later implants were loaded with a fixed prosthesis. A temporary sensory complication occurred, but 12 months after implant loading, there were no failures. In this case report block bone grafting was a feasible option to vertically augment the alveolar ridge in the posterior mandible.


Sign in / Sign up

Export Citation Format

Share Document