scholarly journals An analysis of the habitat of the Greater One-horned Rhinoceros Rhinoceros unicornis (Mammalia: Perissodactyla: Rhinocerotidae) at the Chitwan National Park, Nepal

2014 ◽  
Vol 6 (10) ◽  
pp. 6313-6325 ◽  
Author(s):  
Vivek Thapa ◽  
Miguel F. Acevedo ◽  
Kul P. Limbu
2014 ◽  
Vol 2 (4) ◽  
pp. 402-408 ◽  
Author(s):  
S. Thakur ◽  
C.R. Upreti ◽  
K. Jha

The Greater One-horned Rhinoceros (Rhinoceros unicornis) is found almost exclusively in Nepal and North-Eastern India. There have beenonly a few studies made on the food and the nutrient compositions of fodder species preferred by The Greater One- horned Rhinoceros. Thepresent study identifies the nutrient content of the fodder species consumed by One-horned rhinoceros which would be helpful to develop proper strategies for rhinoceros food management. For this altogether 8 grass species which were most preferred by rhinoceros were collected from Chitwan National Park. Systematic sampling was applied for sample collection and collected samples were taken to the Animal Nutrition Laboratory, Khumaltar for nutrient analysis. Among all the collected species the highest OM% was seen in Faank (93.98 ± 0.88) while Ash% and CP% was found to be highest in Eragrastic Tenella (13.67 ± 2.92) and Phragmatic karka (11.94 ± 2.26) respectively. Lowest NDF% was again seen in Eragrastic tenella (76.76 ± 2.93) and lowest ADF% and ADL% were found in Mala dubo with mean values (43.50 ± 6.86) and (6.41 ± 2.16) respectively showing high digestibility of these grasses. There were only slight variation in the EE% of the grass species withhighest mean value of (3.702 ± 1.73) of Imperata cylindrical to lowest mean value of (1.722 ± 0.11) of Eragrastic tenella. Highest energy was found in Faank (4181.90 ±1.10) and Calcium content was seen highest in Cynodon dactylon (1.30 ± 0.83).DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11119 Int J Appl Sci Biotechnol, Vol. 2(4): 402-408 


2012 ◽  
Vol 88 (1) ◽  
pp. 32-40 ◽  
Author(s):  
R. Devkota ◽  
S.V. Brant ◽  
A. Thapa ◽  
E.S. Loker

AbstractBecause the digenetic trematode fauna of Nepal is poorly known, we began to search for schistosomes in and around Chitwan National Park (CNP) of southern Nepal. Both domestic and wild Indian elephants (Elephus maximus) are present, and we found one of two dung samples from wild elephants and 1 of 22 (4.5%) dung samples from domestic elephants to be positive for schistosome eggs. The morphology of the eggs and both cox1 and 28S sequences derived from the eggs/miracidia were consistent with Bivitellobilharzia nairi, reported here for the first time from Nepal. Also, 7 of 14 faecal samples from the Asian or greater one-horned rhinoceros (Rhinoceros unicornis) contained viable eggs indistinguishable from those of B. nairi. This identification was confirmed by comparison with both cox1 and 28S sequences from B. nairi eggs/miracidia derived from Nepalese and Sri Lankan elephants. This represents the first sequence-verified identification of a schistosome from any species of rhinoceros, and the first verified occurrence of a representative of Bivitellobilharzia (a genus of ‘elephant schistosomes’) in mammals other than elephants. Our work suggests that elephants and rhinos share B. nairi in CNP, even though these two members of the ‘charismatic megafauna’ belong to unrelated mammalian families. Their shared life style of extensive contact with freshwater habitats likely plays a role, although the snail intermediate host and mode of definitive host infection for B. nairi have yet to be documented. This report also supports Bivitellobilharzia as a monophyletic group and its status as a distinct genus within Schistosomatidae.


Oryx ◽  
2013 ◽  
Vol 47 (3) ◽  
pp. 352-360 ◽  
Author(s):  
Naresh Subedi ◽  
Shant Raj Jnawali ◽  
Maheshwar Dhakal ◽  
Narendra M.B. Pradhan ◽  
Babu Ram Lamichhane ◽  
...  

AbstractWe assessed the abundance and distribution of the greater one-horned or Indian rhinoceros Rhinoceros unicornis in all its potential habitats in Nepal, using block counts. In April 2011 5,497 km were searched in 3,548 elephant-hours over 23 days. The validity of the block count was assessed by comparing it with counts obtained from long-term monitoring using photographic identification of individual rhinoceroses (ID-based), and estimates obtained by closed population sighting–mark–resighting in the 214 km2 of Chitwan National Park. A total of 534 rhinoceroses were found during the census, with 503 in Chitwan National Park (density 1 km−2), 24 in Bardia National Park (0.28 km−2) and seven in Suklaphanta Wildlife Reserve (0.1 km−2). In Chitwan 66% were adults, 12% subadults and 22% calves, with a female : male ratio of 1.24. The population estimate from sighting–mark–resighting was 72 (95% CI 71–78). The model with different detection probabilities for males and females had better support than the null model. In the Sauraha area of Chitwan estimates of the population obtained by block count (77) and ID-based monitoring (72) were within the 95% confidence interval of the estimate from sighting–mark–resighting. We recommend a country-wide block count for rhinoceroses every 3 years and annual ID-based monitoring in a sighting–mark–resighting framework within selected subpopulations. The sighting–mark–resighting technique provides the statistical rigour required for population estimates of the rhinoceros in Nepal and elsewhere.


Oryx ◽  
2013 ◽  
Vol 47 (3) ◽  
pp. 361-368 ◽  
Author(s):  
Sean T. Murphy ◽  
Naresh Subedi ◽  
Shant Raj Jnawali ◽  
Babu Ram Lamichhane ◽  
Gopal Prasad Upadhyay ◽  
...  

AbstractAs part of a census of the Indian rhinoceros Rhinoceros unicornis a survey was conducted to measure the extent of invasion by the neotropical plant mikania Mikania micrantha across major habitats of Chitwan National Park important for the conservation of the rhinoceros. Previous work has demonstrated that this fire-adapted plant can smother and kill native flora such as grasses and sapling trees, several of which are important fodder plants of the rhinoceros. Here, additional studies were conducted on the risks of anthropogenic factors (natural resource collection and grassland burning) contributing to the spread and growth of the plant. Mikania is currently found across 44% of habitats sampled and almost 15% of these have a high infestation (> 50% coverage). Highest densities were recorded from riverine forest, tall grass and wetland habitats and this is where the highest numbers of rhinoceroses were recorded in the habitats surveyed during the census. Local community dependence on natural resources in the core area of the Park is high. The range and volume of resources (e.g. fodder) collected and the distances travelled all pose a high risk of the spread of mikania. Of greater significance is the annual burning of the grasslands in the Park by local communities, estimated at 25–50% of the total area. It is imperative, therefore, that core elements of a management plan for mikania incorporate actions to control burning, reduce spread and raise awareness about best practice for local resource management by local communities.


Oryx ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 370-377 ◽  
Author(s):  
Thakur Silwal ◽  
Jaromir Kolejka ◽  
Bharat P. Bhatta ◽  
Santosh Rayamajhi ◽  
Ram P. Sharma ◽  
...  

AbstractWildlife attacks on people in and around protected areas have become one of the main challenges for wildlife management authorities. We assessed all correlates of wildlife attacks during 2003–2013 in the vicinity of Chitwan National Park, Nepal. We used data from various sources (discussion with stakeholders, field observations, questionnaire surveys). Wildlife attacks were significantly correlated to factors such as site, season and time, activity, gender and awareness. Moreover, 89% of recorded attacks occurred outside the Park. The number of attacks fluctuated widely and patterns of attacks were significantly uneven across seasons and months. Of the 87% of attacks that occurred during the day, 63% occurred in the morning. Most victims were male and c. 45% of attacks occurred when people were collecting forest resources or working on croplands. Attacks were carried out predominantly by rhinoceros Rhinoceros unicornis (38%), tigers Panthera tigris (21%), sloth bears Melursus ursinus (18%), elephants Elephas maximus (9%) and wild boar Sus scrofa (8%). The people attacked lived close to the Park, depended on farming for their livelihoods, and had little knowledge of animal behaviour. Attacks can be mitigated through proper management of habitats inside the Park and raising awareness of wildlife behaviour among local people. We recommend establishing a participatory emergency rescue team to deal with problematic animals in high-risk areas.


Oryx ◽  
2013 ◽  
Vol 47 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Kanchan Thapa ◽  
Santosh Nepal ◽  
Gokarna Thapa ◽  
Shiv Raj Bhatta ◽  
Eric Wikramanayake

AbstractUntil the early 1980s the only surviving population of the greater one-horned rhinoceros Rhinoceros unicornis in Nepal was in Chitwan National Park. Between 1986 and 2003 87 rhinoceroses from Chitwan were translocated into Bardia National Park and Suklaphanta Wildlife Reserve in the western terai region to establish founder populations and reduce the threat of local extinction from natural catastrophic events, disease and/or poaching. The founder populations increased in number through births but a rise in poaching during the period of civil strife in Nepal during 1996–2006 resulted in a dramatic decline in the populations, including in Chitwan. In 2001 the Terai Arc Landscape programme was initiated to connect 11 protected areas in Nepal and north-west India and facilitate dispersal of megafauna and manage them as metapopulations. Corridors that were restored under the programme and that connect Bardia and Suklaphanta with protected areas in India are now used by the greater one-horned rhinoceros. The successes and failures of the last 2 decades indicate that new paradigms for protecting rhinoceroses within and outside protected areas are needed, especially with reference to managing this species at a landscape scale.


2018 ◽  
Vol 10 (11) ◽  
pp. 12451-12458 ◽  
Author(s):  
Rama Mishra ◽  
Khadga Basnet ◽  
Rajan Amin ◽  
Babu Ram Lamichhane

The Fishing Cat is a highly specialized and threatened felid, and its status is poorly known in the Terai region of Nepal.  Systematic camera-trap surveys, comprising 868 camera-trap days in four survey blocks of 40km2 in Rapti, Reu and Narayani river floodplains of Chitwan National Park, were used to determine the distribution and habitat characteristics of this species.  A total of 19 photographs of five individual cats were recorded at three locations in six independent events.  Eleven camera-trap records obtained during surveys in 2010, 2012 and 2013 were used to map the species distribution inside Chitwan National Park and its buffer zone.  Habitat characteristics were described at six locations where cats were photographed.  The majority of records were obtained in tall grassland surrounding oxbow lakes and riverbanks.  Wetland shrinkage, prey (fish) depletion in natural wetlands and persecution threaten species persistence.  Wetland restoration, reducing human pressure and increasing fish densities in the wetlands, provision of compensation for loss from Fishing Cats and awareness programs should be conducted to ensure their survival.  We also recommend studying genetic diversity of sub-populations, as well as habitat use by radio-tagging. 


2017 ◽  
Vol 1 (2) ◽  
pp. 19-26
Author(s):  
Parveen Kumar Jha

 This research paper gives checklist of common birds of Chitwan National Park, which is a wild-life protected area in south-central Nepal. It covers tropical and sub-tropical vegetation. It is first protected area and includes 932 sq. km. Common birds observed are about 170 belonging to 48 Avian families during 2013-2014. Present investigator has very minutely observed birds in habitat conditions. Bird species were recognized by very high binocular. Birds were thoroughly studied from point of view of Taxonomy. Machans were also erected for observing birds.


Sign in / Sign up

Export Citation Format

Share Document