Longitudinal Gradients for Endothelium-Dependent and -Independent Vascular Responses in the Coronary Microcirculation

Circulation ◽  
1995 ◽  
Vol 92 (3) ◽  
pp. 518-525 ◽  
Author(s):  
Lih Kuo ◽  
Michael J. Davis ◽  
William M. Chilian
2015 ◽  
Vol 30 (2) ◽  
pp. 75
Author(s):  
Seungeun Yang ◽  
Eun-Ju Lee ◽  
Seung-Ho Paik ◽  
Beop-Min Kim

1993 ◽  
Vol 27 (7-8) ◽  
pp. 381-385 ◽  
Author(s):  
Y. Oziransky ◽  
B. Shteinman

Data of high spatial and temporal resolution, and a special sampling program are essential for successful application of mathematical models designed to reproduce observed seasonal patterns of temperature, dissolved oxygen, nutrients, pH, and algal biomass for both vertical and longitudinal gradients in a water body. Lake Kinneret suspended solids are of great potential value for estimating transport, exposure to water body elements, and fate of many toxic substances. Therefore the distribution of admixtures in two longitudinal and five vertical segmentation schemes were examined with the two-dimensional water body quality box model “BETTER” (Bender et al, 1990). The transects were taken in the north-western part of Lake Kinneret close to the Jordan River mouth and the National Water Carrier (NWC) head pumping station. The outflow volumes were given according to regular sampling of natural speed of water outflow from different lake layers under calm conditions. Temporal distribution of mixing concentrations as well as turbulent diffusion horizontal coefficients due to the spatial distribution of turbulent scale were obtained during the model's run with the December 1991 data.


Hypertension ◽  
1997 ◽  
Vol 30 (3) ◽  
pp. 596-602 ◽  
Author(s):  
Rosa Amalia Bobadilla ◽  
Carlos Castillo Henkel ◽  
Enrique Castillo Henkel ◽  
Bruno Escalante ◽  
Enrique Hong

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel T. L. Myers ◽  
Richard R. Rediske ◽  
James N. McNair ◽  
Aaron D. Parker ◽  
E. Wendy Ogilvie

Abstract Background Urban areas are often built along large rivers and surrounded by agricultural land. This may lead to small tributary streams that have agricultural headwaters and urbanized lower reaches. Our study objectives assessed are as follows: (1) landscape, geomorphic, and water quality variables that best explained variation in aquatic communities and their integrity in a stream system following this agricultural-to-urban land use gradient; (2) ways this land use gradient caused aquatic communities to differ from what would be expected for an idealized natural stream or other longitudinal gradients; and (3) whether the impacts of this land use gradient on aquatic communities would grow larger in a downstream direction through the agricultural and urban developments. Our study area was an impaired coldwater stream in Michigan, USA. Results Many factors structured the biological communities along the agricultural-to-urban land use gradient. Instream woody debris had the strongest relationship with EPT (Ephemeroptera, Plecoptera, and Trichoptera) abundance and richness and were most common in the lower, urbanized watershed. Fine streambed substrate had the strongest relationship with Diptera taxa and surface air breather macroinvertebrates and was dominant in agricultural headwaters. Fish community assemblage was influenced largely by stream flow and temperature regimes, while poor fish community integrity in lower urban reaches could be impacted by geomorphology and episodic urban pollution events. Scraping macroinvertebrates were most abundant in deforested, first-order agricultural headwaters, while EPT macroinvertebrate richness was the highest downstream of agricultural areas within the urban zone that had extensive forest buffers. Conclusion Environmental variables and aquatic communities would often not conform with what we would expect from an idealized natural stream. EPT richness improved downstream of agricultural areas. This shows promise for the recovery of aquatic systems using well-planned management in watersheds with this agricultural-to-urban land use pattern. Small patches of forest can be the key to conserving aquatic biodiversity in urbanized landscapes. These findings are valuable to an international audience of researchers and water resource managers who study stream systems following this common agricultural-to-urban land use gradient, the ecological communities of which may not conform with what is generally known about land use impacts to streams.


Sign in / Sign up

Export Citation Format

Share Document