Assessment of Turbulent Processes in Lake Kinneret by the Two-Dimensional Reservoir Water Quality Model “Better”

1993 ◽  
Vol 27 (7-8) ◽  
pp. 381-385 ◽  
Author(s):  
Y. Oziransky ◽  
B. Shteinman

Data of high spatial and temporal resolution, and a special sampling program are essential for successful application of mathematical models designed to reproduce observed seasonal patterns of temperature, dissolved oxygen, nutrients, pH, and algal biomass for both vertical and longitudinal gradients in a water body. Lake Kinneret suspended solids are of great potential value for estimating transport, exposure to water body elements, and fate of many toxic substances. Therefore the distribution of admixtures in two longitudinal and five vertical segmentation schemes were examined with the two-dimensional water body quality box model “BETTER” (Bender et al, 1990). The transects were taken in the north-western part of Lake Kinneret close to the Jordan River mouth and the National Water Carrier (NWC) head pumping station. The outflow volumes were given according to regular sampling of natural speed of water outflow from different lake layers under calm conditions. Temporal distribution of mixing concentrations as well as turbulent diffusion horizontal coefficients due to the spatial distribution of turbulent scale were obtained during the model's run with the December 1991 data.

Author(s):  
An Zhang ◽  
Jinhuang Lin ◽  
Wenhui Chen ◽  
Mingshui Lin ◽  
Chengcheng Lei

Long-term exposure to ozone pollution will cause severe threats to residents’ physical and mental health. Ground-level ozone is the most severe air pollutant in China’s Pearl River Delta Metropolitan Region (PRD). It is of great significance to accurately reveal the spatial–temporal distribution characteristics of ozone pollution exposure patterns. We used the daily maximum 8-h ozone concentration data from PRD’s 55 air quality monitoring stations in 2015 as input data. We used six models of STK and ordinary kriging (OK) for the simulation of ozone concentration. Then we chose a better ozone pollution prediction model to reveal the ozone exposure characteristics of the PRD in 2015. The results show that the Bilonick model (BM) model had the highest simulation precision for ozone in the six models for spatial–temporal kriging (STK) interpolation, and the STK model’s simulation prediction results are significantly better than the OK model. The annual average ozone concentrations in the PRD during 2015 showed a high spatial variation in the north and east and low in the south and west. Ozone concentrations were relatively high in summer and autumn and low in winter and spring. The center of gravity of ozone concentrations tended to migrate to the north and west before moving to the south and then finally migrating to the east. The ozone’s spatial autocorrelation was significant and showed a significant positive correlation, mainly showing high-high clustering and low-low clustering. The type of clustering undergoes temporal migration and conversion over the four seasons, with spatial autocorrelation during winter the most significant.


2021 ◽  
Vol 1885 (2) ◽  
pp. 022043
Author(s):  
Caodong Jiang ◽  
Liangchao Ma ◽  
Dongfeng Li ◽  
Hongwu Zhang ◽  
Zihao Li

2006 ◽  
Vol 63 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Tore Haug ◽  
Garry B. Stenson ◽  
Peter J. Corkeron ◽  
Kjell T. Nilssen

Abstract From 14 March to 6 April 2002 aerial surveys were carried out in the Greenland Sea pack ice (referred to as the “West Ice”), to assess the pup production of the Greenland Sea population of harp seals, Pagophilus groenlandicus. One fixed-wing twin-engined aircraft was used for reconnaissance flights and photographic strip transect surveys of the whelping patches once they had been located and identified. A helicopter assisted in the reconnaissance flights, and was used subsequently to fly visual strip transect surveys over the whelping patches. The helicopter was also used to collect data for estimating the distribution of births over time. Three harp seal breeding patches (A, B, and C) were located and surveyed either visually or photographically. Results from the staging flights suggest that the majority of harp seal females in the Greenland Sea whelped between 16 and 21 March. The calculated temporal distribution of births were used to correct the estimates obtained for Patch B. No correction was considered necessary for Patch A. No staging was performed in Patch C; the estimate obtained for this patch may, therefore, be slightly negatively biased. The total estimate of pup production, including the visual survey of Patch A, both visual and photographic surveys of Patch B, and photographic survey of Patch C, was 98 500 (s.e. = 16 800), giving a coefficient of variation of 17.9% for the survey. Adding the obtained Greenland Sea pup production estimate to recent estimates obtained using similar methods in the Northwest Atlantic (in 1999) and in the Barents Sea/White Sea (in 2002), it appears that the entire North Atlantic harp seal pup production, as determined at the turn of the century, is at least 1.4 million animals per year.


2008 ◽  
Vol 82 (1) ◽  
pp. 69-76 ◽  
Author(s):  
A.K. Bashirullah ◽  
M.T. Diaz

AbstractThe qualitative and quantitative parameters of temporal distribution ofCucullanus tripapillatusandCucullanus chrysophrydesin the intestine ofOrthopristis ruberin the Caribbean Sea on the north of Margarita Island, Venezuela were analysed. A total of 540 fish were collected at random from the catch of commercial trawlers during 1982–83 and 1992–93. Both species ofCucullanuswere found throughout the year; prevalence and mean intensity ofC. tripapillatuswere higher than that ofC. chrysophrydes. A significant difference was found in infection between the two years of sampling. Female worms were more abundant than male in both years. Both species exhibited pronounced prevalence and maturity in September and March of each year, indicating seasonality. The patterns of occurrence of the two species ofCucullanusinO. ruberdid not change in the 10-year interval but the host size and number of parasites declined, which may be due to over-exploitation of definitive fish hosts.


2021 ◽  
Author(s):  
Emmanuel Skourtsos ◽  
Haralambos Kranis ◽  
Spyridon Mavroulis ◽  
Efthimios Lekkas

<p>The NNE-SSW, right-lateral Kefalonia Transform Fault (KTF) marks the western termination of the subducting Hellenic slab, which is a part of the oceanic remnant of the African plate. The inception of the KTF, described as a STEP fault, is placed in the Pliocene. KTF is considered to be the most active earthquake source in the Eastern Mediterranean. During the last two decades, four significant earthquakes (M>6.0) have been associated with the KTF. These events are attributed to the reactivation of different segments of the KTF, which are (from North to South) the North Lefkada, South Lefkada, Fiskardo, Paliki and Zakynthos segments: the North Lefkada segment ruptured in the 2003 earthquake, the 2014 Kefalonia events are associated with the Paliki segment and the 2015 Lefkada earthquake with the South Lefkada (and possibly the Fiskardo) segments.</p><p>The upper plate structure in the islands of Lefkada and Kefalonia is characterized by the Ionian Unit, thrusted over the Paxi (or Pre-Apulian) Unit. The Ionian Thrust, which brings the Ionian over the Paxi Unit, is a main upper-plate NNW-SSE, NE-dipping structure. It runs through the island of Lefkada, to be mapped onshore again at the western coast of Ithaki and at SE Kefalonia. Two other major thrusts are mapped on this island: the Aenos thrust, which has a WNW-ESE strike at the southern part of the island and gradually curves towards NNW-SSE in the west and the Kalo Fault in the northern part. These Pliocene (and still active) structures developed during the late-most stages of thrusting in the Hellenides, strike obliquely to the KTF and appear to abut against it.</p><p>We suggest that these thrusts control not only the deformation within the upper plate, but also the earthquake segmentation of the KTF. This suggestion is corroborated by the spatio-temporal distribution and source parameters of the recent, well-documented earthquake events and by the macroseismic effects of these earthquakes. The abutment of the Ionian thrust against the KTF marks the southern termination of the Lefkada earthquake segment, which ruptured in the 2003 earthquake, while the Aenos, (or the Kalo) thrust mark the southern end of the Fiskardo segment. The spatial distribution of the Earthquake Environmental Effects related to the four significant events in the last 20 years displays a good correlation with our interpretation: most of the 2003 macroseismic effects are located in the northern part of Lefkada, which belongs to the upper block of the Ionian thrust; similarly, the effects of the 2014 earthquakes of Kefalonia are distributed mainly in the Paliki Peninsula and the southern part of the island that belong to the footwall of the Aenos thrust and the 2015 effects are found in SW Lefkada, which is part of the footwall of the Ionian thrust.</p><p>We suggest that correlation between upper-plate structure and plate boundary faulting can provide insights in the understanding of faulting pattern in convergent settings, therefore contributing to earthquake management plans.</p>


2021 ◽  
Author(s):  
Stan Thorez ◽  
Koen Blanckaert ◽  
Ulrich Lemmin ◽  
David Andrew Barry

<p>Lake and reservoir water quality is impacted greatly by the input of momentum, heat, oxygen, sediment, nutrients and contaminants delivered to them by riverine inflows. When such an inflow is negatively buoyant, it will plunge upon contact with the receiving ambient water and form a gravity-driven current near the bed (density current). If such a current is sediment-laden, its bulk density can be higher than that of the surrounding ambient water, even if its carrying fluid has a density lower than that of the surrounding ambient water. After sufficient sediment particles have settled however, the buoyancy of the current can reverse and lead to the plume rising up from the bed, a process referred to as lofting. In a stratified environment, the river plume may then find its way into a layer of neutral buoyancy to form an intermediate current (interflow). A deeper understanding of the wide range of hydrodynamic processes related to the transitions from open-channel inflow to underflow (plunging) and from underflow to interflow (lofting) is crucial in predicting the fate of all components introduced into the lake or reservoir by the inflow.</p><p>Field measurements of the plunging inflow of the negatively buoyant Rhône River into Lake Geneva (Switzerland/France) are presented. A combination of a vessel-mounted ADCP and remote sensing cameras was used to capture the three-dimensional flow field of the plunging and lofting transition zones over a wide range of spatial and temporal scales.</p><p>In the plunge zone, the ADCP measurements show that the inflowing river water undergoes a lateral (perpendicular to its downstream direction) slumping movement, caused by its density surplus compared to the ambient lake water and the resulting baroclinic vorticity production. This effect is also visible in the remote sensing images in the form of a distinct plume of sediment-rich water with a triangular shape leading away from the river mouth in the downstream direction towards a sharp tip. A wide range of vortical structures, which most likely impact the amount of mixing taking place, is also visible at the surface in the plunging zone.</p><p>In the lofting zone, the ADCP measurements show that the underflow undergoes a lofting movement at its edges. This is most likely caused by a higher sedimentation rate due to the lower velocities at the underflow edges and leads to a part of the underflow peeling off and forming an interflow, while the higher velocity core of the underflow continues following the bed. Here, the baroclinic vorticity production works in the opposite direction as that in the plunge zone. Further downstream, as more particles have settled and the surrounding ambient water has become denser, the remaining underflow also undergoes a lofting motion. The remnants of these lofting processes show in the remote sensing images as intermittent ‘boils’ of sediment rich water reaching the surface and traces of surface layer leakage.</p>


2019 ◽  
Vol 76 (1) ◽  
pp. 333-356 ◽  
Author(s):  
A. Hannachi ◽  
W. Iqbal

Abstract Nonlinearity in the Northern Hemisphere’s wintertime atmospheric flow is investigated from both an intermediate-complexity model of the extratropics and reanalyses. A long simulation is obtained using a three-level quasigeostrophic model on the sphere. Kernel empirical orthogonal functions (EOFs), which help delineate complex structures, are used along with the local flow tendencies. Two fixed points are obtained, which are associated with strong bimodality in two-dimensional kernel principal component (PC) space, consistent with conceptual low-order dynamics. The regimes reflect zonal and blocked flows. The analysis is then extended to ERA-40 and JRA-55 using daily sea level pressure (SLP) and geopotential heights in the stratosphere (20 hPa) and troposphere (500 hPa). In the stratosphere, trimodality is obtained, representing disturbed, displaced, and undisturbed states of the winter polar vortex. In the troposphere, the probability density functions (PDFs), for both fields, within the two-dimensional (2D) kernel EOF space are strongly bimodal. The modes correspond broadly to opposite phases of the Arctic Oscillation with a signature of the negative North Atlantic Oscillation (NAO). Over the North Atlantic–European sector, a trimodal PDF is also obtained with two strong and one weak modes. The strong modes are associated, respectively, with the north (or +NAO) and south (or −NAO) positions of the eddy-driven jet stream. The third weak mode is interpreted as a transition path between the two positions. A climate change signal is also observed in the troposphere of the winter hemisphere, resulting in an increase (a decrease) in the frequency of the polar high (low), consistent with an increase of zonal flow frequency.


Sign in / Sign up

Export Citation Format

Share Document