scholarly journals Effects of opioid peptides on neural control of renal function in spontaneously hypertensive rats.

Hypertension ◽  
1990 ◽  
Vol 15 (6_pt_2) ◽  
pp. 767-773 ◽  
Author(s):  
D R Kapusta ◽  
S Y Jones ◽  
G F DiBona
2007 ◽  
Vol 292 (2) ◽  
pp. H814-H819 ◽  
Author(s):  
Luis C. Matavelli ◽  
Xiaoyan Zhou ◽  
Jasmina Varagic ◽  
Dinko Susic ◽  
Edward D. Frohlich

We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% ( n = 11), 6% ( n = 9), or 8% ( n = 11) salt-load diet for the ensuing 8 wk; control rats ( n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.


Hypertension ◽  
2005 ◽  
Vol 46 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Minoru Yoneda ◽  
Hironobu Sanada ◽  
Junichi Yatabe ◽  
Sanae Midorikawa ◽  
Shigeatsu Hashimoto ◽  
...  

1998 ◽  
Vol 76 (1) ◽  
pp. 63-67 ◽  
Author(s):  
María Reverte ◽  
Olga Flores ◽  
Belén Gallego ◽  
Antonio Lestón ◽  
José Miguel López-Novoa

We have studied during 30 days the effect of a low dose of NG-nitro-L-arginine methyl ester (1 mg ·kg-1 ·day-1 in drinking water) in the presence of D- or L-arginine (1 mg ·kg-1 ·day-1 in drinking water) in comparison with D- or L-arginine alone on blood pressure and renal function in conscious uninephrectomized female spontaneously hypertensive rats. At the end of the study, there was a significant increase in systolic blood pressure in the NG-nitro-L-arginine methyl ester + D-arginine group (307 ± 6 mmHg (1 mmHg = 133.3 Pa), n = 14, p << 0.05) in comparison with NG-nitro-L-arginine methyl ester + L-arginine (281 ± 6 mmHg, n = 14), L-arginine (262 ± 5 mmHg, n = 13), and D-arginine (258 ± 7 mmHg, n = 12) groups. There were no changes in diuresis, proteinuria, or sodium and potassium excretion between differently treated animals during this study. These results suggest that in uninephrectomized female spontaneously hypertensive rats, after 1 month blockade of NO synthesis with a low dose of NG-nitro-L-arginine methyl ester, vasculature is under tonic control by NO and it is not correlated with renal dysfunction.Key words: Key words: NG -nitro-L-arginine methyl ester (L-NAME), kidney, hypertension, spontaneously hypertensive rats, renaldysfunction, uninephrectomy.


1991 ◽  
Vol 260 (1) ◽  
pp. R21-R26 ◽  
Author(s):  
Y. Sato ◽  
K. Ando ◽  
E. Ogata ◽  
T. Fujita

We studied the effects of K supplementation (8% KCl) for 4 wk on blood pressure (BP), Na space, and renal hemodynamics in 5-wk-old, spontaneously hypertensive rats (SHR) or age-matched Wistar-Kyoto rats (WKY) eating normal-NaCl (0.66%) or high-NaCl (8%) diet. In WKY, high-Na and/or high-K diets had no effects on BP. In SHR, Na load accelerated the development of hypertension, whereas K supplementation did not affect BP of normal-Na SHR but attenuated the increase in BP with Na load. Correspondingly, Na load in SHR significantly increased renal vascular resistance (RVR), and K supplementation attenuated the increased RVR of Na-loaded SHR. Moreover, Na space of SHR was increased compared with that of WKY, and although Na load did not affect Na space, K supplementation tended to decrease Na space in SHR. These results indicate that 9-wk-old SHR is relatively volume-expanded compared with age-matched WKY, and K supplementation could improve the lowered slope of the pressure-Na excretion relationship in SHR, resulting in maintenance of Na balance. Thus the data suggest that changes in RVR, which might be intimately related to renal function for Na excretion, contribute to both salt sensitivity of SHR and antihypertensive action of K supplementation in Na-loaded SHR.


1986 ◽  
Vol 250 (3) ◽  
pp. F488-F496 ◽  
Author(s):  
H. J. Grone ◽  
R. S. Grippo ◽  
W. J. Arendshorst ◽  
M. J. Dunn

As platelet and renal thromboxane (TX)A2 synthesis are increased in spontaneously hypertensive rats (SHR), we tested the hypothesis that increased renal TXA2 synthesis may cause the reduction in glomerular filtration rate (GFR), renal plasma flow (RPF), and the increase in arterial pressure in SHR of the Okamoto-Aoki strain. A selective inhibitor of TXA2 synthetase (UK 38485) was given acutely, with or without a TXA2 receptor antagonist (EP-092), to 6- to 8-wk-old SHR and age-matched Wistar-Kyoto rats (WKY) and chronically for 5.5 wk to 3.5-wk-old SHR. Inhibition of TXA2, measured by the stable metabolite TXB2, in the acute experiments was greater than 95% in serum and greater than 80% in glomeruli; in the chronic studies, it was greater than 65% in glomeruli. There was no endoperoxide shunting to vasodilatory and natriuretic prostaglandins (PGE2, PGI2) in glomeruli after TXA2 inhibition. Before drug administration, GFR and RPF were reduced and renal vascular resistance (RVR) was increased in SHR. During acute blockade of renal TXA2 synthesis, with or without a TXA2 receptor antagonist, there was no significant change in GFR, RPF, or RVR in WKY and SHR. Inhibition of TXA2 did not affect urine flow or sodium excretion in anesthetized or conscious WKY or SHR. Mean arterial pressure did not fall in treated SHR and WKY. Chronic TXA2 synthesis inhibition did not improve GFR or RPF in SHR, and systolic arterial pressure was not altered. These findings show that enhanced serum and glomerular TXA2 synthesis do not significantly contribute to the reduction in renal function and are not essential for the development of hypertension in young SHR.


Sign in / Sign up

Export Citation Format

Share Document