scholarly journals Vascular Smooth Muscle Cells Express the α 1A Subunit of a P-/Q-Type Voltage-Dependent Ca 2+ Channel, and It Is Functionally Important in Renal Afferent Arterioles

2000 ◽  
Vol 87 (10) ◽  
pp. 896-902 ◽  
Author(s):  
Pernille B. Hansen ◽  
Boye L. Jensen ◽  
Ditte Andreasen ◽  
Ulla G. Friis ◽  
Ole Skøtt
2000 ◽  
Vol 278 (3) ◽  
pp. H714-H722 ◽  
Author(s):  
Rui Wang ◽  
Yuejin Wu ◽  
Guanghua Tang ◽  
Lingyun Wu ◽  
Salma Toma Hanna

Vascular complications of diabetes are associated with abnormal Ca2+ handling by vascular smooth muscle cells (SMCs) in which the alteration in L-type voltage-dependent Ca2+ channel (VDCC) currents may play an important role. In the present study, the characteristics of L-type VDCC currents in tail artery SMCs from streptozotocin-induced diabetic rats were examined. The densities, but not the voltage dependence, of L-type VDCC currents were reduced as diabetes progressed from 1 wk to 3 mo. The inhibitory effect of dibutyryl-cAMP on L-type VDCC currents was greater in diabetic SMCs than in age-matched control cells ( P < 0.01). Both the stimulatory effect of BAY K 8644 and the inhibitory effect of nifedipine on L-type VDCC currents were significantly enhanced in diabetic cells. The diabetes-related abnormalities in L-type VDCC currents were mimicked by culturing SMCs with a high concentration of glucose. Our results suggest that the properties of L-type VDCC in diabetic vascular SMCs were significantly altered, partially related to the increased L-type VDCC sensitivity to cAMP and hyperglycemia.


1994 ◽  
Vol 103 (4) ◽  
pp. 665-678 ◽  
Author(s):  
U Klöckner ◽  
G Isenberg

Modulation of L-type Ca2+ channel current by extracellular pH (pHo) was studied in vascular smooth muscle cells from bovine pial and porcine coronary arteries. Relative to pH 7.4, alkaline pH reversibly increased and acidic pH reduced ICa. The efficacy of pHo in modulating ICa was reduced when the concentration of the charge carrier was elevated ([Ca2+]o or [Ba2+]o varied between 2 and 110 mM). Analysis of whole cell and single Ca2+ channel currents suggested that more acidic pHo values shift the voltage-dependent gating (approximately 15 mV per pH-unit) and reduce the single Ca2+ channel conductance gCa due to screening of negative surface charges. pHo effects on gCa depended on the pipette [Ba2+] ([Ba2+]p), pK*, the pH providing 50% of saturating conductance, increased with [Ba2+]p according to pK* = 2.7-2.log ([Ba2+]p) suggesting that protons and Ba2+ ions complete for a binding site that modulates gCa. The above mechanisms are discussed in respect to their importance for Ca2+ influx and vasotonus.


2016 ◽  
Vol 310 (11) ◽  
pp. F1197-F1205 ◽  
Author(s):  
Lingli Li ◽  
En Yin Lai ◽  
Anton Wellstein ◽  
William J. Welch ◽  
Christopher S. Wilcox

Myogenic contraction is the principal component of renal autoregulation that protects the kidney from hypertensive barotrauma. Contractions are initiated by a rise in perfusion pressure that signals a reduction in membrane potential ( Em) of vascular smooth muscle cells to activate voltage-operated Ca2+ channels. Since ROS have variable effects on myogenic tone, we investigated the hypothesis that superoxide (O2·−) and H2O2 differentially impact myogenic contractions. The myogenic contractions of mouse isolated and perfused single afferent arterioles were assessed from changes in luminal diameter with increasing perfusion pressure (40–80 mmHg). O2·−, H2O2, and Em were assessed by fluorescence microscopy during incubation with paraquat to increase O2·− or with H2O2. Paraquat enhanced O2·− generation and myogenic contractions (−42 ± 4% vs. −19 ± 4%, P < 0.005) that were blocked by SOD but not by catalase and signaled via PKC. In contrast, H2O2 inhibited the effects of paraquat and reduced myogenic contractions (−10 ± 1% vs. −19 ± 2%, P < 0.005) and signaled via PKG. O2·− activated Ca2+-activated Cl− channels that reduced Em, whereas H2O2 activated Ca2+-activated and voltage-gated K+ channels that increased Em. Blockade of voltage-operated Ca2+ channels prevented the enhanced myogenic contractions with paraquat without preventing the reduction in Em. Myogenic contractions were independent of the endothelium and largely independent of nitric oxide. We conclude that O2·− and H2O2 activate different signaling pathways in vascular smooth muscle cells linked to discreet membrane channels with opposite effects on Em and voltage-operated Ca2+ channels and therefore have opposite effects on myogenic contractions.


Sign in / Sign up

Export Citation Format

Share Document