Abstract 13513: Serial CT Surveillance of Abdominal Aortic Aneurysm Diameter Demonstrates Predominantly Linear Growth (N-TA 3 CT)

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Sydney Olson ◽  
Marniker Wijesinha ◽  
Annalise Panthofer ◽  
William Blackwelder ◽  
Gilbert R Upchurch ◽  
...  

Objective: Small abdominal aortic aneurysms (AAAs) have a low risk of rupture. Intervention is indicated when diameters exceed established thresholds. This study assessed the growth rates and patterns of AAAs over 2 years as documented on serial CT scans from the Non-Invasive Treatment of AAA Clinical Trial. Methods: 254 patients, 35 females with baseline AAA maximum transverse diameter (MTD) between 3.5-4.5 cm and 219 males with baseline MTD 3.5-5.0 cm, were included in this study. Linear regressions and segmental growth rates were used to model growth rates and patterns. Results: The yearly growth rates of AAA MTDs had a median of 0.17 cm/yr and mean of 0.19 cm/yr ± 0.14 (Figure 1). 10% of AAA displayed minimal to no growth (< 0.05 cm/yr), 62% low growth (0.05-0.25 cm/yr), 28% high growth (> 0.25 cm/yr). Baseline AAA diameter accounted for only 5.4% of growth rate variance (P<0.001, R 2 0.05). Most AAAs displayed linear growth (70%); large variations in interval growth rates occurred infrequently (3% staccato growth, 4% exponential growth); a minority of subjects’ growth patterns were not clearly classifiable (11% indeterminate-not growing, 12% indeterminate-growing) (Figure 2). No patients with baseline MTD < 4.25 cm exceeded sex-specific repair thresholds (males 0 / 92, [95% CI, 0.00-0.06]; females 0 / 25 [95% CI, 0.00-0.25]) in the course of follow-up for as long as two years. Conclusions: The majority of small AAAs exhibit linear growth; large intra-patient growth rate variations were infrequently observed over 2 years. AAA < 4.25 cm can be followed with a CT scan in 2 years with little chance of exceeding interventional MTD thresholds of 5.5 cm for men.

1998 ◽  
Vol 85 (12) ◽  
pp. 1674-1680 ◽  
Author(s):  
Vardulaki ◽  
Prevost ◽  
Walker ◽  
Day ◽  
Wilmink ◽  
...  

Author(s):  
Lambert Speelman ◽  
Femke A. Hellenthal ◽  
E. Marielle H. Bosboom ◽  
Jaap Buth ◽  
Marcel Breeuwer ◽  
...  

In the decision for surgical repair of abdominal aortic aneurysms (AAAs), the risk of rupture is weighed carefully against the risk of the surgical procedure. The risk of rupture is estimated based on the maximum diameter and the growth rate of the AAA. Previous studies indicate that AAA growth rate increases with the diameter of the AAA [1, 2]. However, this growth rate is not the same for each AAA, as some AAA’s remain stable over a long period of time, while others show a fast growth or grow discontinuously.


Ultrasound ◽  
2011 ◽  
Vol 19 (4) ◽  
pp. 197-202
Author(s):  
M A Bailey ◽  
A M Charnell ◽  
K J Griffin ◽  
C J Czoski-Murray ◽  
S Sohrabi ◽  
...  

Once detected, abdominal aortic aneurysms (AAA) are surveyed with periodic ultrasound scans until they reach an intervention threshold, based on maximal AAA size. The rate of AAA growth varies greatly between patients. There has been significant research interest in pharmacological interventions to attenuate AAA growth and a lack of good-quality evidence for surveillance scan intervals. However, studies to date have used differing methods of growth rate estimation which have been analysed together in meta-analyses. We questioned the validity of this approach and systematically reviewed the methods currently used for AAA growth estimation in the literature and considered their relative merits and limitations. We reviewed 23 studies that met our inclusion criteria, containing a total of 9769 patients and identified three methods of growth rate estimation in use: (i) a simple distance/time calculation, (ii) linear regression modelling and (iii) linear multilevel modelling. Multilevel modelling had significant advantages over the other two methods as it allowed a linear model to reflect individualized growth rates of each patient. However, all methods in use presumed AAA growth to be linear and this is not necessarily the case. Further work using models which allow for nonlinear (e.g. quadratic) growth patterns is required. Consensus on a standardized model would allow valid pooling of data between centres. The UK National AAA Screening Programme will provide an important data source for ongoing work in this area.


VASA ◽  
2005 ◽  
Vol 34 (4) ◽  
pp. 217-223 ◽  
Author(s):  
Diehm ◽  
Schmidli ◽  
Dai-Do ◽  
Baumgartner

Abdominal aortic aneurysm (AAA) is a potentially fatal condition with risk of rupture increasing as maximum AAA diameter increases. It is agreed upon that open surgical or endovascular treatment is indicated if maximum AAA diameter exceeds 5 to 5.5cm. Continuing aneurysmal degeneration of aortoiliac arteries accounts for significant morbidity, especially in patients undergoing endovascular AAA repair. Purpose of this review is to give an overview of the current evidence of medical treatment of AAA and describe prospects of potential pharmacological approaches towards prevention of aneurysmal degeneration of small AAAs and to highlight possible adjunctive medical treatment approaches after open surgical or endovascular AAA therapy.


VASA ◽  
2018 ◽  
Vol 47 (4) ◽  
pp. 267-272 ◽  
Author(s):  
Konstanze Stoberock ◽  
Tilo Kölbel ◽  
Gülsen Atlihan ◽  
Eike Sebastian Debus ◽  
Nikolaos Tsilimparis ◽  
...  

Abstract. This article analyses if and to what extent gender differences exist in abdominal aortic aneurysm (AAA) therapy. For this purpose Medline (PubMed) was searched from January 1999 to January 2018. Keywords were: “abdominal aortic aneurysm”, “gender”, “prevalence”, “EVAR”, and “open surgery of abdominal aortic aneurysm”. Regardless of open or endovascular treatment of abdominal aortic aneurysms, women have a higher rate of complications and longer hospitalizations compared to men. The majority of studies showed that women have a lower survival rate for surgical and endovascular treatment of abdominal aneurysms after both elective and emergency interventions. Women receive less surgical/interventional and protective medical treatment. Women seem to have a higher risk of rupture, a lower survival rate in AAA, and a higher rate of complications, regardless of endovascular or open treatment. The gender differences may be due to a higher age of women at diagnosis and therapy associated with higher comorbidity, but also because of genetic, hormonal, anatomical, biological, and socio-cultural differences. Strategies for treatment in female patients must be further defined to optimize outcome.


2011 ◽  
Vol 98 (5) ◽  
pp. 609-618 ◽  
Author(s):  
J. T. Powell ◽  
M. J. Sweeting ◽  
L. C. Brown ◽  
S. M. Gotensparre ◽  
F. G. Fowkes ◽  
...  

2021 ◽  
pp. 153537022199253
Author(s):  
Yuan Li ◽  
Dan Yang ◽  
Yuehong Zheng

As a prevalent potentially life-threatening condition, abdominal aortic aneurysm (AAA) presents increasing risk of rupture as its diameter grows. However, rapid progression and rupture may occasionally occur in smaller AAAs. Earlier surgery for patients with high risk of disease progression may improve the outcome. Therefore, more precise indicators for invasive treatment in addition to diameter and abdominal symptoms are demanded. This systematic review aimed to identify potential circulating biomarkers that may predict growth rate of AAA. Cochrane and PubMed library were searched (until August 2020) for researches which reported circulating biomarkers associated with AAA expansion, and 25 papers were included. Twenty-eight identified biomarkers were further classified into five categories (inflammation and oxidative stress, matrix degradation, hematology and lipid metabolism, thrombosis and fibrinolysis, and others), and discussed further with their correlation and regression analysis results. Larger prospective trials are required to establish and evaluate prognostic models with highest values with these markers.


2008 ◽  
Vol 90 (6) ◽  
pp. 477-482 ◽  
Author(s):  
S Devaraj ◽  
SR Dodds

INTRODUCTION Some studies have considered abdominal aortas of 2.6–2.9 cm diameter (ectatic aortas) at age 65 years as being abnormal and have recommended surveillance, whereas others have considered these normal and surveillance unnecessary. It is, therefore, not clear how to manage patients with an initial aortic diameter between 2.6–2.9 cm detected at screening. The aim of this study was to evaluate growth rates of ectatic aortas detected on initial ultrasound screening to determine if any developed into clinically significant abdominal aortic aneurysms (AAAs; > 5.0 cm) and clarify the appropriate surveillance intervals for these patients. PATIENTS AND METHODS Data were obtained from a prospective AAA screening programme which commenced in 1992. The group of patients with initial aortic diameters of 2.6–2.9 cm with a minimum of 1-year follow-up were included in this study (Group 2). This was further divided into two subgroups (Groups 3a and 3b) based on a minimum follow-up interval obtained from outcome analysis. Mean growth rate was calculated as change in aortic diameter with time. The comparison of growth rates in Groups 3a and 3b was performed using the t-test. The number and proportion of AAAs that expanded to ≥ 3.0 cm and ≥ 5.0 cm in diameter were also calculated. RESULTS Out of 999 patients with AAA ≥ 2.6 cm with minimum 1-year follow-up, 358 (36%) were classified as ectatic aortas (2.6–2.9 cm) at initial ultrasound screening with the mean growth rate of 1.69 mm/year (95% CI, 1.56–1.82 mm/year) with a mean follow-up of 5.4 years. Of these 358 ectatic aortas, 314 (88%) expanded into ≥ 3.0 cm, 45 (13%) expanded to ≥ 5.0 cm and only 8 (2%) expanded to ≥ 5.5 cm over a mean follow-up of 5.4 years (range, 1–14 years). No ectatic aortas expanded to ≥ 5.0 cm within the first 4 years of surveillance. Therefore, the minimum follow-up interval was set at 4 years and this threshold was then used for further analysis. The mean growth rate in Group 3a (< 5.0 cm at last scan) was 1.33 mm/year (95% CI, 1.23–1.44 mm/year) with a mean follow-up of 7 years compared to Group 3b (≥ 5.0 cm at last scan) with the mean growth rate of 3.33 mm/year (95% CI 3.05–3.61 mm/year) and a mean follow-up of 8 years. The comparison of mean growth rates between Groups 3a and 3b is statistically significant (t-test; T = 13.00; P < 0.001). CONCLUSIONS One-third of patients undergoing AAA screening will have ectatic aortas (2.6–2.9 cm) and at least 13% of these will expand to a size of ≥ 5.0 cm over a follow-up of 4–14 years. A threshold diameter of 2.6 cm for defining AAAs in a screening programme is recommended and ectatic aortas detected at age 65 years can be re-screened at 4 years after the initial scan. A statistically significant difference was found in the growth rates of ectatic aortas with minimum 4 years follow-up, expanding to ≥ 5.0 cm compared to those less than 5.0 cm at last surveillance scan. Further studies are required to test the hypothesis of whether growth rate over the first 4 years of surveillance will identify those who are most likely to expand to a clinically significant size (> 5.0 cm).


Author(s):  
Jeffrey N. Kinkaid ◽  
Steven P. Marra ◽  
Francis E. Kennedy ◽  
Mark F. Fillinger

Abdominal Aortic Aneurysms (AAAs) are localized enlargements of the aorta. If untreated, AAAs will grow irreversibly until rupture occurs. Ruptured AAAs are usually fatal and are a leading cause of death in the United States, killing 15,000 per year (National Center for Health Statistics, 2001). Surgery to repair AAAs also carries mortality risks, so surgeons desire a reliable tool to evaluate the risk of rupture versus the risk of surgery.


Sign in / Sign up

Export Citation Format

Share Document